
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

SOFTWARE RE-ENGINEERING OF THE HUMAN
FACTORS ANALYSIS AND CLASSIFICATION SYSTEM –

(MAINTENANCE EXTENSION) USING OBJECT
ORIENTED METHODS IN A MICROSOFT

ENVIRONMENT

by

Thomas P. Flanders
and

Scott K. Tufts

September 2001

 Thesis Advisor: Thomas Wu
 Thesis Co-Advisor: Chris Eagle

Report Documentation Page

Report Date
30 Sep 2001

Report Type
N/A

Dates Covered (from... to)
-

Title and Subtitle
Software Re- engineering of the Human Factors Analysis
and Classification System (Maintenance Extension)
Using Object Oriented Methods in a Microsoft
Environment.

Contract Number

Grant Number

Program Element Number

Author(s)
Flanders, Thomas P. and Tufts, Scott K.

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Research Office Naval Postgraduate School Monterey,
Ca 93943-5138

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
433

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Software Re-engineering of the Human Factors
Analysis and Classification System – (Maintenance Extension) Using Object
Oriented Methods in a Microsoft Environment.
6. AUTHOR(S) Flanders, Thomas P. and Tufts, Scott K.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The purpose of this research is to technically evaluate, refine, and expand two existing aircraft safety management

information systems (one military and one civilian). The systems are used in the data collection, organization, query, analysis, and
reporting of maintenance errors that contribute to Aviation mishaps, equipment damage, and personnel injury. Both programs
implement the Human Factors Analysis and Classification System (HFACS) taxonomy model developed by the Naval Safety Center
(NSC) to capture aircrew errors in Naval Aviation mishaps. The goal of this taxonomy is to identify areas for potential interventio n by
fully describing factors that are precursors to aircraft accidents.

Requirements outlined by Dr. John K. Schmidt of the Naval Safety Center, in conjunction with funding by the National
Aeronautics & Space Administration, require that the system utilize a Microsoft Access based implementation. This research focuses
on meticulous software engineering to investigate the feasibility of adapting the current "structured" systems to Microsoft-based object
oriented architectures ensuring future scalability and increased potential for code-reuse.

Primary research questions investigated in this thesis include: 1) How can a Microsoft Access based implementation
provide multi-user access to the same database in a client-server environment while ensuring the ability to scale to a large number
(potentially thousands) of users? 2) How can the linguistic discontinuity associated with object -oriented concepts and non-object
oriented, flat relational databases be overcome when limited by the requirement for a Microsoft Access based solution? 3) The current
military and civilian systems provide similar functionality, but use different database schema. How can object oriented methods be
implemented to provide a common interface to both types of data? 4) How should database schema be changed to provide the best
performance, scalability, and opportunity for code re-use? 5) In the past, Microsoft has deployed new versions of Microsoft Access
and Visual Basic that were not (fully) backwards compatible with previous versions. This caused great discontent among users of
applications designed to run under the older versions of these programs. How can our system(s) be designed to isolate them from
problems associated with new versions of Microsoft products? Specifically, the pending release of Microsoft Office 2002, the new
SQL Server 2000 database engine, and Microsoft Visual Basic.NET.

This thesis describes our use of the Spiral Development Model to create a Microsoft Based solution for the Aviation Safety
School requirements. We hypothesize that this research produced products that greatly enhance current HFACS-capabilities and
provide the means to weather further changes in requirements and application platforms.

15. NUMBER OF
PAGES

14. SUBJECT TERMS Aviation Safety, Microsoft Access, HFACS, HFACS-ME, Flanders, Tufts,
FAA, Federal Aviation Administration, NASA, National Aeronautics and Space Administration

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The purpose of this research is to technically evaluate, refine, and expand two

existing aircraft safety management information systems (one military and one civilian).

The systems are used in the data collection, organization, query, analysis, and reporting

of maintenance errors that contribute to Aviation mishaps, equipment damage, and

personnel injury. Both programs implement the Human Factors Analysis and

Classification System (HFACS) taxonomy model developed by the Naval Safety Center

(NSC) to capture aircrew errors in Naval Aviation mishaps. The goal of this taxonomy is

to identify areas for potential intervention by fully describing factors that are precursors

to aircraft accidents.

Requirements outlined by Dr. John K. Schmidt of the Naval Safety Center, in

conjunction with funding by the National Aeronautics & Space Administration, require

that the system utilize a Microsoft Access based implementation. This research focuses

on meticulous software engineering to investigate the feasibility of adapting the current

"structured" systems to Microsoft-based object oriented architectures ensuring future

scalability and increased potential for code-reuse.

 Primary research questions investigated in this thesis include: 1) How can a

Microsoft Access based implementation provide multi-user access to the same database in

a client-server environment while ensuring the ability to scale to a large number

(potentially thousands) of users? 2) How can the linguistic discontinuity associated with

object-oriented concepts and non-object oriented, flat relational databases be overcome

when limited by the requirement for a Microsoft Access based solution? This problem is

commonly called "impedence Mismatch". 3) The current military and civilian systems

provide similar functionality, but use different database schema. How can object oriented

methods be implemented to provide a common interface to both types of data? 4) How

should database schema be changed to provide the best performance, scalability, and

opportunity for code re-use? 5) In the past, Microsoft has deployed new versions of

Microsoft Access and Visual Basic that were not (fully) backwards compatible with

previous versions. This caused great discontent among users of applications designed to

 vi

run under the older versions of these programs. How can our system(s) be designed to

isolate them from problems associated with new versions of Microsoft products?

Specifically, the pending release of Microsoft Office 2002, the new SQL Server 2000

database engine, and Microsoft Visual Basic.NET.

 This thesis describes our use of the Spiral Development Model to create a

Microsoft Based solution for the Aviation Safety School requirements. We hypothesize

that the prototype produced as a part of our research will greatly enhance current

HFACS-capabilities and provide the means to weather further changes in requirements

and application platforms.

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. AREA OF RESEARCH/SCOPE ..5
C. REQUIREMENTS...6
D. METHODOLOGY ..11

1. Phase I - Requirements Analysis ..11
2. Phase II - System Foundation Development/Implementation.......12
3. Phase III - HFACS-ME Development/Implementation12
4. Phase IV - Test and Analysis...12

E. ASSUMPTIONS...12
F. DEFINITIONS ...12
G. ORGANIZATION ...13

II. REQUIREMENTS ANALYSIS ...15
A. OVERVIEW...15
B. USE CASE ANALYSIS ...15

1. Query Database..17
a. Query by Single Field...17
b. Query by Multiple Fields ..18
c. Create a Report..18
d. HFACS-ME Summary..19
e. Create a Graph..19

2. Add to Database...20
a. Add a mishap...20
b. Add Factor...21

3. Edit Records in Database..21
a. Edit Mishap ...22
b. Edit Factor...23

4. Change Server..23
5. Replace the Database...24

a. Replace the Database via FTP..25
b. Replace the Database via Disk..25

C. CLASS-RESPONSIBILITY-COLLABORATION (CRC) CARDS.........26
D. MICROSOFT ACCESS & DATABASE ENGINES27
E. DATA ACCESS TECHNOLOGIES ..28

1. OLE DB...29
2. ADO...30
3. ODBC..31
4. DAO...31
5. RDO...31
6. SQLDMO..32

 viii

F. PROGRAMMING MICROSOFT ACCESS AND SQL SERVER...........33
G. MICROSOFT DEVELOPMENT EFFORTS ...35

1. Access 2002 [Ref. 16]..35
2. Visual Basic.NET [Ref. 17]..36
3. SQL Server ...37

H. THE CONCEPTUAL MODEL ..37

III. HFACS CONNECTIVITY COMPONENT DEVELOPMENT............................41
A. OVERVIEW...41
B. SEQUENCE DIAGRAMS ..41

1. Change Server..42
2. Replace the Database via FTP ..42
3. Replace the Database via Disk..43

C. COLLABORATION DIAGRAMS ..43
1. Change Server..43
2. Replace the Database via FTP ..44
3. Replace the Database via Disk..44

D. CLASS DIAGRAMS ...44
1. HFACS Connection Class ...45
2. HFACS_Main Class...46
3. UpdateController Class ...46
4. UpdateDisk Class ...47
5. FTPUpdate Class ...47
6. MSDE Class..47

E. IDENTIFICATION OF SDM STAGES ..48
F. IMPLEMENTATION - STAGE 1 ...49
G. IMPLEMENTATION - STAGE 2 ...55
H. IMPLEMENTATION - STAGE 3 ...58
I. SUMMARY..61

IV. HFACS BUSINESS COMPONENT DEVELOPMENT..63
A. OVERVIEW...63
B. ARCHITECTURE...63
C. SEQUENCE DIAGRAMS ..66

1. Add Factors ..67
2. Add Mishap ..68
3. Graph ..69
4. Edit a Mishap ...69
5. Edit a Factor...70
6. Get Summary Report ...71
7. Create a Report ..71
8. Query...72

D. COLLABORATION DIAGRAMS ..72
1. Add Factors ..73
2. Add Mishaps ...73
3. Graph ..74
4. Edit a Mishap ...74

 ix

5. Edit a Factor...74
6. Get Summary Report ...75
7. Create a Report ..75
8. Query...76

E. CLASS DIAGRAMS ...76
1. Main Menu Class ...78
2. Connection Functions Class..78
3. Select Mishap Class..79
4. Edit Mishap Class ..79
5. Add Mishap Class ..79
6. Expert Graph Class ...80
7. Actual Graph Class..80
8. Query Menu Class..81
9. Summary Class...81
10. Expert Query Class..82
11. View Mishaps Class ...82
12. Report Class..82

F. IDENTIFICATION OF SDM STAGES ..83
G. IMPLEMENTATION - STAGE 1 ...83
H. IMPLEMENTATION - STAGE 2 ...86
I. IMPLEMENTATION - STAGE 3 ...88
J. IMPLEMENTATION - STAGE 4 ...90
K. IMPLEMENTATION - STAGE 5 ...92

1. Windows 98 Tests..92
2. Windows 2000 Tests..93

V. CONCLUSIONS AND RECOMMENDATIONS...95
A. CONCLUSIONS ..95
B. RECOMMENDATIONS...100
C. SUMMARY..101

APPENDIX A. CRC CARDS DEVELOPED FOR HFASC-ME...................................103
A. CONNECTION COMPONENT CRC CARDS ..103
B. BUSINESS LOGIC COMPONENTS CRC CARDS................................105

APPENDIX B. CLASS DIAGRAMS..111
A. FACS.DLL CLASS DIAGRAM ...111
B. HFACSFTP.EXE CLASS DIAGRAM ..111

APPENDIX C. DESCRIPTION OF CLASSES ...113
A. HFACS CONNECTION CLASS..113

1. Class Description..113
2. Data Member Description...113
3. Method Description..114

B. ODBLOGON CLASS ..115
1. Class Description..115
2. Data Member Description...115
3. Method Description..116

 x

C. UPDATECONTROLLER CLASS ...116
1. Class Description..116
2. Data Member Description...116
3. Method Description..117

D. DISK UPDATE CLASS ..117
1. Class Description..117
2. Data Member Description...117
3. Method Description..117

E. FTPUPDATE CLASS..118
1. Class Description..118
2. Data Member Description...118
3. Method Description..118

F. MSDE CLASS ..119
1. Class Description..120
2. Data Member Description...120
3. Method Description..120

G. CALLBACK CLASS...122
1. Class Description..122
2. Data Member Description...122
3. Method Description..123

H. INIFILE CLASS ..123
1. Class Description..123
2. Data Member Description...123
3. Method Description..123

I. HFACSMAIN CLASS...124
1. Class Description..124
2. Data Member Description...125

J. INIFILECONTROLLER CLASS..127
1. Class Description..127
2. Data Member Description...127
3. Method Description..127

K. WAIT CLASS...128
1. Class Description..128
1. Data Member Description...128
2. Method Description..128

L. WELCOME CLASS..128
1. Class Description..128
2. Data Member Description...129
3. Method Description..129

M. CONSTRUCTORS CLASS ..129
1. Class Description..129
2. Data Member Description...129
3. Method Description..129

N. ERRORLOG CLASS ..130
1. Class Description..130

 xi

2. Data Member Description...130
3. Method Description..130

O. FTPCBK CLASS ...130
1. Class Description..131
2. Data Member Description...131
3. Method Description..131

P. TIMER CLASS ..131
1. Class Description..131
2. Data Member Description...131
3. Method Description..131

Q. FTP CLASS ..132
1. Class Description..132
2. Data Member Description...132
3. Method Description..134

APPENDIX D. ..137

APPENDIX E. DESCRIPTION OF BUSINESS LOGIC CLASSES139
A. INIFILE CLASS ..139

1. Class Description..139
2. Data Member Description...139
3. Method Description..139

B. GLOBALDECLARATIONS CLASS ..140
1. Class Description..140
2. Data Member Description...140
3. Method Description..140

C. DETERMINEOSDECLARES CLASS..141
1. Class Description..141
2. Data Member Description...141
3. Method Description..142

D. FORMWINDOW CLASS...143
1. Class Description..143
2. Data Member Description...143
3. Method Description..144

E. SIZING FUNCTION CLASS ...145
1. Class Description..145
2. Data Member Description...145
3. Method Description..145

F. SELECT MISHAP CLASS...146
1. Class Description..146
2. Data Member Description...147
3. Method Description..147

G. SUB SELECT MISHAP CLASS ..147
1. Class Description..148
2. Data Member Description...148
3. Method Description..148

H. EDIT MISHAP CLASS...148

 xii

1. Class Description..149
2. Data Member Description...149
3. Method Description..149

I. MISHAP DESCRIPTION CLASS...150
1. Class Description..150
2. Data Member Description...150
3. Method Description..150

J. FACTORS CLASS...151
1. Class Description..151
2. Data Member Description...151
3. Method Description..151

K. ADD MISHAP CLASS..152
1. Class Description..152
2. Data Member Description...152
3. Method Description..152

L. CODE MAINTENANCE CLASS ..154
1. Class Description..155
2. Data Member Description...155
3. Method Description..155

M. CLOSE COMMAND CLASS...155
1. Class Description..155
2. Data Member Description...155
3. Method Description..155

N. CONNECTION FUNCTIONS CLASS..156
1. Class Description..156
2. Data Member Description...156
3. Method Description..156

O. PLEASE WAIT CLASS..158
1. Class Description..158
2. Data Member Description...158
3. Method Description..158

P. MAIN MENU CLASS ...159
1. Class Description..159
2. Data Member Description...159
3. Method Description..159

Q. ACTUAL GRAPH CLASS ...161
1. Class Description..161
2. Data Member Description...161
3. Method Description..162

R. EXPERT GRAPH CLASS..163
1. Class Description..164
2. Data Member Description...164
3. Method Description..164

S. SUMMARY CLASS ..165
1. Class Description..165

 xiii

2. Data Member Description...166
3. Method Description..166

T. VIEW MISHAPS CLASS ...168
1. Class Description..168
2. Data Membe r Description...168
3. Method Description..168

U. EXPERT QUERY CLASS..169
1. Class Description..169
2. Data Member Description...170
3. Method Description..170

V. QUERY MENU CLASS..171
1. Class Description..172
2. Data Member Description...172
3. Method Description..172

W. REPORT CLASS...173
1. Class Description..173
2. Data Member Description...173
3. Method Description..173

APPENDIX F. BUSINESS LOGIC COMPONENT CODE...175

APPENDIX G. CONNECTION COMPONENT...269

APPENDIX H. CLIPBOARD UTILITY..313

APPENDIX I. FTP SERVER...315

APPENDIX J. INSTALL CD CODE..323

APPENDIX K. INVESTIGATION MODULE ..327

APPENDIX L. MODIFIED VB SETUP1 ...363

APPENDIX M. STORED PROCEDURES ..367

LIST OF REFERENCES ..405

INITIAL DISTRIBUTION LIST...409

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF FIGURES

Figure 1.1a. Management Conditions Category. ...2
Figure 1.1b. Working Conditions Category. ..3
Figure 1.1c. Maintainer Conditions Category. ...3
Figure 1.1d. Maintainer Acts Categories..4
Figure 1.2. Example HFACS Summary. ..9
Figure 1.3. Example HFACS Report Output. ..10
Figure 2.1. HFACS-ME Use Cases (1st Level). ...16
Figure 2.2. Query Database Use Case. ...17
Figure 2.3. Add to Database Use Case. ..20
Figure 2.4. Edit a Record in Database Use Case. ...21
Figure 2.5. Replace the Database Use Case. ..24
Figure 2.6. OLE DB Architecture. ...30
Figure 2.7. Conceptual Model for the Connection Component. ..38
Figure 2.8. Conceptual Model for the Business -Logic Component.39
Figure 2.9. Conceptual Architecture at the End of Requirements Analysis.......................40
Figure 3.1. Change Server Sequence Diagram. ..42
Figure 3.2. Replace the Database via FTP Sequence Diagram. ...42
Figure 3.3. Replace the Database via Disk Sequence Diagram. ..43
Figure 3.4. Change Server Collaboration Diagram. ...43
Figure 3.5. Replace the Database via FTP Collaboration Diagram.44
Figure 3.6. Replace the Database via FTP Collaboration Diagram.44
Figure 3.7. Interim Class Diagram. ..45
Figure 3.8. Class Diagram for HFACS Connection. ..46
Figure 3.9. HFACS_Main Class Diagram. ...46
Figure 3.10. Class Diagram for UpdateController Class..46
Figure 3.11. Class Diagram for UpdateDisk Class. ...47
Figure 3.12. Class Diagram for FTPUpdate Class. ..47
Figure 3.13. Class Diagram for MSDE Class. ...48
Figure 3.14. OLE DB Architecture. ...55
Figure 3.15. File Install Locations..58
Figure 4.1. Add Factor Sequence Diagram. ...67
Figure 4.2. Add Mishap Sequence Diagram. ...68
Figure 4.3. Graph Sequence Diagram. ...69
Figure 4.4. Edit a Mishap Sequence Diagram. ...69
Figure 4.5. Edit a Factor Sequence Diagram. ...70
Figure 4.6. Summary Report Sequence Diagram. ..71
Figure 4.7. Create a Report Sequence Diagram. ..71
Figure 4.8. Query Sequence Diagram. ...72
Figure 4.9. Add Factors Collaboration Diagram. ...73
Figure 4.10. Add Mishaps Collaboration Diagram. ...73
Figure 4.11. Graph Collaboration Diagram. ...74

 xvi

Figure 4.12. Edit a Mishap Collaboration Diagram. ..74
Figure 4.13. Edit a Factor Collaboration Diagram. ..74
Figure 4.14. Get Summary Report Collaboration Diagram. ..75
Figure 4.15. Create a Report Collaboration Diagram. ..75
Figure 4.16. Query Collaboration Diagram. ...76
Figure 4.17. Intermediate Class Diagram...77
Figure 4.18. Main Menu Class Diagram. ...78
Figure 4.19. Connection Functions Class Diagram..78
Figure 4.20. Class Diagram for Select Mishap Class. ..79
Figure 4.21. Edit Mishap Class Diagram. ..79
Figure 4.22. Add Mishap Class Diagram. ..79
Figure 4.23. Expert Graph Class Diagram. ..80
Figure 4.24. Actual Graph Class Diagram. ..80
Figure 4.25. Query Menu Class Diagram. ..81
Figure 4.26. Summary Class Diagram. ..81
Figure 4.27. Expert Query Class Diagram. ..82
Figure 4.28. View Mishaps Class Diagram..82
Figure 4.29. Report Class Diagram. ...82
Figure 4.30. HFACS Tables - 3rd Normal Form. ..85
Figure 4.31. HFACS Tables - Final Solution. ..86
Figure 4.32. Example Crosstab Query. ..91
Figure C.1. Class Diagram for HFACS Connection. ..113
Figure C.2. Class Diagram for ODBLogon. ...115
Figure C.3. Class Diagram for UpdateController Class..116
Figure C.4. Class Diagram for Disk Update Class. ..117
Figure C.5. Class Diagram for FTPUpdate Class. ..118
Figure C.6. Class Diagram for MSDE Class. ...119
Figure C.7. Class Diagram for Callback Class. ..122
Figure C.8. INIFile Class Diagram. ..123
Figure C.9. HFACSMain Class Diagram. ...124
Figure C.10. INIFileController Class Diagram...127
Figure C.11. Wait Class Diagram. ..128
Figure C.12. Welcome Class Diagram. ...128
Figure C.13. Constructors Class Diagram. ...129
Figure C.14. ErrorLog Class Diagram. ...130
Figure C.15. FTPCBK Class Diagram. ...130
Figure C.16. Timer Class Diagram. ..131
Figure C.17. FTP Class Diagram. ...132
Figure E.1. Class Diagram for INIFile Class. ...139
Figure E.2. Class Diagram for GlobalDeclaration Class. ...140
Figure E.3. Class Diagram for DetermineOSDeclares Class..141
Figure E.4. Class Diagram for FormWindow Class. ..143
Figure E.5. Class Diagram for Sizing Function Class. ...145
Figure E.6. Class Diagram for Select Mishap Class. ..146
Figure E.7. Class Diagram for Sub Select Mishap Class..147

 xvii

Figure E.8. Edit Mishap Class Diagram. ..148
Figure E.9. Mishap Description Class Diagram. ..150
Figure E.10. Factors Class Diagram. ..151
Figure E.11. Add Mishap Class Diagram. ..152
Figure E.12. Code Maintenance Class Diagram. ..154
Figure E.13. Close Command Class Diagram. ...155
Figure E.14. Connection Functions Class Diagram..156
Figure E.15. Please Wait Class Diagram. ...158
Figure E.16. Main Menu Class Diagram. ...159
Figure E.17. Actual Graph Class Diagram. ..161
Figure E.18. Expert Graph Class Diagram. ..163
Figure E.19. Summary Class Diagram. ..165
Figure E.20. View Mishaps Class Diagram..168
Figure E.21. Expert Query Class Diagram. ..169
Figure E.22. Query Menu Class Diagram. ..171
Figure E.23. Report Class Diagram. ...173

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

We would like to acknowledge and thank the following people for their part in the

successful completion of this thesis:

Our advisors, Dr. Thomas Wu and LtCdr Chris Eagle for providing much needed

advice, support, expertise, and patience.

Capt John K. Schmidt and Capt(R) George Zolla for their guidance and direction

of the HFACS effort.

Brian Steckler and his team of programmers at of Universal Internet for their

assistance on various aspects of the design.

Tabitha Barham, James Carr, and Keith Wong of Microsoft Corporation for their

assistance in troubleshooting issues related to the SQLDMO object model and with the
Microsoft Office Developer version of the Package & Deployment program.

CPT Dwight Hunt of TRAC Monterey, for his support and provision of licensed

development tools.

Cdr Anthony Boex and CPT Doug Nelson for their assistance with the actual code

effort.

Mr. Steve Dassin, inventor of the Replacement for Access Crosstab package of

tools. This project would have no graphs or reports without his assistance.

Mr. Andy Irvine of Explain Limited, who provided greatly needed assistance

troubleshooting advanced SQL queries.

Our wives, Kelley Flanders and MiKyong Tufts for their unwavering support.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

EXECUTIVE SUMMARY

The purpose of this research is to technically evaluate, refine, and expand two

existing aircraft safety management information systems (one military and one civilian).

The systems are used in the data collection, organization, query, analysis, and reporting

of maintenance errors that contribute to Aviation mishaps, equipment damage, and

personnel injury. Both programs implement the Human Factors Analysis and

Classification System (HFACS) taxonomy model developed by the Naval Safety Center

(NSC) to capture aircrew errors in Naval Aviation mishaps. The goal of this taxonomy is

to identify areas for potential intervention by fully describing factors that are precursors

to aircraft accidents.

Requirements outlined by Dr. John K. Schmidt of the Naval Safety Center, in

conjunction with funding by the National Aeronautics & Space Administration, require

that the system utilize a Microsoft Access based implementation. This research focuses

on meticulous software engineering to investigate the feasibility of adapting the current

"structured" systems to Microsoft-based object oriented architectures ensuring future

scalability and increased potential for code-reuse.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

The Human Factors Analysis Classification System - Maintenance Extension

(HFACS-ME) is a tool used in the data collection, organization, query, analysis, and

reporting of maintenance errors that contribute to Aviation mishaps, equipment damage,

and personnel injury. In order to better relate the scope and requirements of the software

reengineering and development efforts outlined in this thesis, a general overview of the

Human Factors Analysis model is in order.

Aircraft accidents occur due to many contributing factors. No matter how

obvious the cause of an accident may appear, an investigation is always performed after

the fact to ensure that all underlying causes for the mishap are captured. Great emphasis

is placed on the word all. A failure to fully describe the causes of a mishap can result in

oversights that allow future mishaps of the same type to occur. Research related to

accident investigations has demonstrated that in seventy to eighty percent of civil and

military aircraft accidents, the underlying causes were human errors [Ref. 25].

Furthermore, close to ninety-two percent of investigations into Naval Reserve Aviation

mishaps cited maintenance personnel as the primary causal factor for the mishap [Ref. 1].

The Naval Safety Center (NSC) recognized the need to develop a formal process

for categorizing the causes of aviation mishaps in an attempt to prevent them from

recurring. In response, it developed a Human Factors Analysis and Classification System

(HFACS) taxonomy. The HFACS model incorporates Reason's model of latent and

active failures [Ref. 27] as well as Heinrich's "Domino Theory" [Ref. 28] and Edward's

"SHEL model" [Ref. 29]. In general, the model facilitates classification of errors and

violations associated with a mishap into several broad categories. Once categorized, the

mishap data is much easier to manipulate and analyze, enhancing problem solving

techniques. Examples of categories in the original model include:

• Supervisory conditions. Inadequate supervision, planning inappropriate
tasks, failure to correct known problems, and supervisory violations.

 2

• Operator conditions. Adverse physical and mental states, which include
situational awareness, mental fatigue, over confidence, complacency,
visual illusions, hypoxia, poor communication, not assertive, intoxication,
mental lapses, and illness.

• Workplace conditions. Confining space, damaged equipment, using
uncertified equipment, inadequate lighting, adverse weather, and
inaccessible workspace.

In 1995, the NSC officially adopted the HFACS model as the standard for

analyzing human errors in Naval Aviation mishaps and targeting appropriate prevention.

Although there was some reduction in the Naval aviation mishap rate with the

implementation of HFACS, its restricted focus on only aircrew errors limited its utility.

A 1997 study by Schmidt, J., Schmorrow, D., & Hardee, M. noted that HFACS could be

extended to cover maintenance errors [Ref. 26]. As a result of this study, a Maintenance

Extension (ME) of the HFACS taxonomy was adapted to classify causal factors that

contributed to maintenance mishaps. The additions to the model focused on detailing

how latent factors that contribute to a maintainer’s performance could possibly lead to an

active failure or ultimately an unsafe maintainer act. The new model (depicted in Figures

1-1a,b,c,d) consists of four major categories each broken down into three levels of inter-

related factors. This new taxonomy can truly be used to define all possible mishap

related factors.

Management
Conditions

Supervisory

• Inadequate Supervision
• Uncorrected Problem
• Inappropriate Operations
• Supervisory Misconduct

Organizational

• Inappropriate Processes
• Inadequate Design
• Inadequate Documentation
• Inadequate Resources

Management
Conditions

Supervisory

• Inadequate Supervision
• Uncorrected Problem
• Inappropriate Operations
• Supervisory Misconduct

Supervisory

• Inadequate Supervision
• Uncorrected Problem
• Inappropriate Operations
• Supervisory Misconduct

Organizational

• Inappropriate Processes
• Inadequate Design
• Inadequate Documentation
• Inadequate Resources

Organizational

• Inappropriate Processes
• Inadequate Design
• Inadequate Documentation
• Inadequate Resources

Figure 1.1a. Management Conditions Category.

 3

Working
Conditions

Workspace

• Inaccessible
• Obstructed
• Confining

Equipment

• Unavailable / Inappropriate
• Damaged /Unserviced
• Dated / Uncertified

Environment

• Unsafe Environmental Hazards
• Unsafe Weather / Exposure
• Inadequate Lighting / Light

Working
Conditions

Workspace

• Inaccessible
• Obstructed
• Confining

Workspace

• Inaccessible
• Obstructed
• Confining

Equipment

• Unavailable / Inappropriate
• Damaged /Unserviced
• Dated / Uncertified

Equipment

• Unavailable / Inappropriate
• Damaged /Unserviced
• Dated / Uncertified

Environment

• Unsafe Environmental Hazards
• Unsafe Weather / Exposure
• Inadequate Lighting / Light

Environment

• Unsafe Environmental Hazards
• Unsafe Weather / Exposure
• Inadequate Lighting / Light

Figure 1.1b. Working Conditions Category.

Maintainer
Conditions

Crew
Coordination

• Inadequate Assertiveness
• Inadequate Communication
• Inadequate Adaptability/Flexibility

Medical

• Limitation
• Adverse Physical State
• Adverse Mental State

Readiness

•Infringement
•Certification / Qualification
•Training / Preparation

Maintainer
Conditions

Crew
Coordination

• Inadequate Assertiveness
• Inadequate Communication
• Inadequate Adaptability/Flexibility

Crew
Coordination

• Inadequate Assertiveness
• Inadequate Communication
• Inadequate Adaptability/Flexibility

Medical

• Limitation
• Adverse Physical State
• Adverse Mental State

Medical

• Limitation
• Adverse Physical State
• Adverse Mental State

Readiness

•Infringement
•Certification / Qualification
•Training / Preparation

Readiness

•Infringement
•Certification / Qualification
•Training / Preparation

Figure 1.1c. Maintainer Conditions Category.

 4

Maintainer
Acts

Violation

• Infraction
• Routine
• Exceptional
• Flagrant

Error

• Knowledge / Rule-Based
• Attention / Memory
• Judgment / Decision-Making
• Skill / Technique-Based

Maintainer
Acts

Violation

• Infraction
• Routine
• Exceptional
• Flagrant

Violation

• Infraction
• Routine
• Exceptional
• Flagrant

Error

• Knowledge / Rule-Based
• Attention / Memory
• Judgment / Decision-Making
• Skill / Technique-Based

Error

• Knowledge / Rule-Based
• Attention / Memory
• Judgment / Decision-Making
• Skill / Technique-Based

Figure 1.1d. Maintainer Acts Categories.

A 1998 review of 470 Naval Aviation mishaps determined that the new HFACS-

ME taxonomy was indeed an effective classification system for determining trends in

aviation mishaps [Ref. 33]. Building on Schmorrow's research, Fry developed the first

partially automated HFACS-ME model implementation [Ref. 34]. Dubbed the

"Maintenance Error Information Management System" (MEIMS), the new tool

effectively could handle more data than its paper-based predecessor -- refining the

HFACS-ME model and making it more efficient and effective. Over time, more

automated improvements were desired. Fry’s rudimentary MIEMS spreadsheet-based

tool was further refined by Wood and developed into a working prototype stand-alone

application [Ref. 2]. This new Microsoft Access 97 based program was distributed for

Fleet testing and evaluation. A follow-on usability study of the prototype determined that

it could be developed into an effective system, not only in determining trends but

providing information for mishap prevention efforts.

In the period between June 2000 and January 2001, the HFACS-ME Microsoft

Access 97 database underwent various modifications to enhance its capabilities and make

it compatible with Microsoft Access 2000. A civilian variant was developed using a

different set of database schema in order to investigate application of the HFACS-ME

model to the commercial aviation industry. In January 2001, Dr. John Schmidt

demonstrated this prototype civilian HFACS-ME system to representatives from NASA

and the FAA. As a result of this meeting, NASA provided funding to support the

 5

development of entirely new prototypes for both the civilian and military versions of

HFACS-ME.

This thesis is part of the new HFACS-ME prototype development effort. There

are four separate groups working on different areas of the project:

• Group 1- Responsible for this thesis, encompassing the software
engineering and implementation of desktop prototypes for both military
and civilian versions of HFACS-ME.

• Group 2 - Responsible for web-enabling the database with support from an
external contractor.

• Group 3 - Responsible for refinements in the existing military and civilian
versions of HFACS-ME and developing requirements for groups 1 and 2.
Also responsible for an independent usability study of our redesigned
HFACS programs.

• Group 4 - Responsible for developing a distance learning interface for the
entire system.

B. AREA OF RESEARCH/SCOPE

A well-designed HFACS-ME information management system capable of

weathering upgrades to platform applications while providing scalability and opportunity

for code reuse will ensure the satisfaction of its users for many years. Providing a user-

friendly interface to the application will ensure standardization of data input and increase

the validity and reliability of the data for investigators and safety personnel. Access to

this data will allow maintainers and safety personnel to quickly identify potential hazards,

analyze trends and ultimately train personnel to avoid future occurrences, reducing

aircraft mishaps and potentially saving lives.

This thesis is part of ongoing effort to investigate the feasibility of the HFACS-

ME as a taxonomy framework for the investigation, collection, and analysis of

maintenance related mishap data with the use of the MEIMS. Our research will enable us

to further refine both versions of HFACS-ME in conjunction with the NASA

requirements and other groups working on their respective areas of the project. The

specific questions we will attempt to answer are:

• How can a Microsoft Access based implementation provide multi-user
access to the same database in a client-server environment while ensuring
the ability to scale to a large number (potentially thousands) of users?

 6

• How can the linguistic discontinuity associated with object-oriented
concepts and non-object oriented, flat relational databases be overcome
when limited by requirements to use certain types of software
implementations (e.g. a Microsoft Access based solution)?

• The current military and civilian systems provide similar functionality, but
use different database schema. How can a common interface be
developed for both types of data?

• How should database schema be changed to provide the best performance,
scalability, and opportunity for code re-use?

• In the past, Microsoft has deployed new versions of Microsoft Access and
Visual Basic that were not (fully) backwards compatible with previous
versions. This caused great discontent among users of applications
designed to run under the older versions of these programs. How can our
systems be designed to isolate them from problems associated with new
versions of Microsoft Access? Specifically, the pending release of
Microsoft Office XP, Microsoft Office 2002 and Microsoft Visual
Basic.NET?

• What new features should be implemented to make the information
systems more user interactive and user friendly?

C. REQUIREMENTS

The purpose of this section is to identify and document requirements for the new

HFACS-ME prototype in a form that clearly communicates the intent of our sponsors.

We recognize the importance of correct and thorough requirements specification as one

of the most important parts of this design effort. The detailed specifications herein were

provided by Dr. John Schmidt of the Navy Aviation Safety Center. These requirements

were established to provide enough information regarding the system to allow us to begin

contemplating the conceptual model for the software engineering effort.

The primary goal of creating a desktop version of HFACS-ME is to provide a

capability for investigating aviation mishaps using an efficient automated tool from a

field location without network/Internet connectivity. The system should provide an

intuitive graphical user interface encompassing all the functionality of the current

HFACS system. In addition, it should be designed so as to provide the capability to scale

into an enterprise level networked & web-enabled application. It must be adequately

documented and provide maximum opportunity for code reuse. In order to facilitate

rapid application development methods the system must be implemented using Microsoft

 7

Access 2000. It must be capable of running on all Intel X86 (or compatible) platforms

running a Microsoft Windows 95 or newer operating system. Finally, to the maximum

extent possible, the system should be developed to insulate it from compatibility

problems associated with upgrades in operating systems, programming languages, and

versions of Access.

The HFACS-ME system must be compatible with many different types of

hardware ranging from notebook computers to large enterprise servers. Although the

system does not have to process data in real-time, it should provide an "adequate" level of

usability with the following minimum hardware specifications:

• Computer CPU: Intel® or compatible Pentium 166 MHz or higher.

• Memory (RAM): 32 MB minimum on all other operating systems

• Hard Disk Space: 75 MB minimum, 150 MB typical

• Monitor: 800x600 or higher resolution required

• Pointing Device: Microsoft Mouse or compatible

• CD-ROM Drive: Required

• Internet Software: Microsoft Internet Explorer 5.0

Two versions of the program are required, one for civilian use and the second for

military use. Specific requirements for the civilian version are not well defined and are

expected to grow after initial release of the program. Care should be taken to provide as

much opportunity for code reuse in this area as possible. As a minimum, the following

system functions and attributes must be implemented in both versions of the program:

A Main Menu. The Main Menu must have the following user options.

• Query

• HFACS-ME Summary

• Graphs

• Reports

• Add/Edit Mishap

• Exit

Details of the "Query" Option. The Query option will provide methods to search

and analyze the accident database. It must allow users to query the database based on

 8

different kinds of criteria in order to locate instances of certain types of mishaps. For

each query result, the screen output should list all contributing factors associated with the

mishap. This includes a description of the factor and the associated first, second and

third level causal codes. There should be an option to display the HFAC-ME taxonomy

so that these causal codes can be better understood. The user should be able to view one

mishap at a time or display the total number of mishaps returned by the users query.

There must be an option to display an expanded description of the mishap. Finally, the

user must be able to query the database by selecting one or any combination of the

following mishap criteria:

• Aircraft Model

• Aircraft Type

• Organization

• Location

• Mishap Class

• Mishap Type

• Year

Details of the "HFACS-ME Summary" Option. The program must offer an

option to tabulate summary statistics of HFACS data that provide the user with the

percentages of all HFACS-ME error categories within a group of selected accidents. This

will be a mathematically intensive operation. The selection categories should be

comprised of the same options as used by the Query option, as well as, all three HFACS-

ME Error Category levels.

The screen output for this implementation should graphically display the HFACS-

ME factors structure. It should illustrate summary statistics for each category. At a

minimum the summary statistics should include number of factors and percentage of

mishaps that with factor. The "Level" categories must allow the user to search the

database for factors that only apply to that level. For example, the user should be able to

identify which accidents involved a Maintainer Act-Violation-Infraction or a

Management Condition-Supervisory-Supervisory Misconduct causal factor. This will

 9

allow users to better identify contributing factors because the corresponding percentages

of the other Error Categories will also be visible on one screen.

All that should be required from the user is to select criteria from some type of list

or list-box to calculate the summary information. This screen must also display the total

number of mishaps included in the summary statistics based upon the users selection.

Figure 1.2 illustrates an example of the type of output this option should provide:

Maintainer
Acts

Violation

• Infraction
• Routine
• Exceptional
• Flagrant

Error

• Knowledge / Rule-Based
• Attention / Memory
• Judgment / Decision-Making
• Skill / Technique-Based

%

%

%

%
%

%
%

%
%

%
%

3rd Level Factor:

2nd Level Factor:

1st Level Factor:

Aircraft Model:

Aircraft Type:

.

.

.

Maintainer
Acts

Violation

• Infraction
• Routine
• Exceptional
• Flagrant

Error

• Knowledge / Rule-Based
• Attention / Memory
• Judgment / Decision-Making
• Skill / Technique-Based

Maintainer
Acts

Violation

• Infraction
• Routine
• Exceptional
• Flagrant

Violation

• Infraction
• Routine
• Exceptional
• Flagrant

Error

• Knowledge / Rule-Based
• Attention / Memory
• Judgment / Decision-Making
• Skill / Technique-Based

Error

• Knowledge / Rule-Based
• Attention / Memory
• Judgment / Decision-Making
• Skill / Technique-Based

%

%

%

%
%

%
%

%
%

%
%

3rd Level Factor:

2nd Level Factor:

1st Level Factor:

Aircraft Model:

Aircraft Type:

.

.

.

3rd Level Factor:3rd Level Factor:

2nd Level Factor:2nd Level Factor:

1st Level Factor:1st Level Factor:

Aircraft Model:Aircraft Model:

Aircraft Type:Aircraft Type:

.

.

.
Figure 1.2. Example HFACS Summary.

Details of the Graph option. The graph option should allow users to select

various mishap data and dynamically create bar charts for analysis. The user should be

able to select any of the following categories to use as X or Y values in the bar chart:

• Aircraft Model

• Aircraft Type

• Organization

• Location

• Mishap Class

• Mishap Type

• Year

Once a category is selected the user will then be able to select a value in that

category. For example, if the user selects Aircraft Model, they will be presented with all

 10

the aircraft models within the database to choose from, F-14, F-18, H46 etc. After the

initial chart has been viewed, the user should have the option to go back and change

selected values or print the chart to a printer.

The Report Option. This option should allow the user print summary reports

based upon the following criteria:

• All mishaps

• By aircraft model

• By mishap class

• By mishap type

• By mishap class and type

• By organization

• By location

• All mishaps chronologically

• By 3rd level factor

• By 2nd level factor

• By 1st level factor

Reports should be categorized so as to print in the format of the HFACS-ME

taxonomy. Each report should display the total number of mishaps associated with the

users selection, the number of mishap factors for each HFACS-ME factor, and the

percentage of factor occurrences vs. total mishaps. Figure 1.3 illustrates an example of

the type of output this option should provide:
HFACS Summary Report

Mishaps By Carrier

As Of: Monday, May 28, 2001 3:14:49 PM

1 - Air Florida Airlines

Category Number % of Total

Unsafe Supervisory Conditions (USC) 1 100%

1 100% Organization

0 0% Hazardous Unsafe Operations

0 0% Inadequate Documentation

1 100% Inadequate Design

1 100% Inadequate Processes

0 0% Inadequate Resources

1 100% Supervisory

1 100% Inadequate Supervision
Figure 1.3. Example HFACS Report Output.

 11

Details of the Add/Edit Mishap option. This option should provide users the

ability to edit any mishap in the database as well as to add new mishaps and factors.

Access to the add edit feature must be controlled via a password mechanism. A wizard

should be implemented to ensure consistency of each new mishap and factor -- all

mandatory data must be provided by the user and validated by program logic for each

new mishap and factor. The following data is mandatory for adding a new mishap:

• Aircraft Model

• Aircraft Type

• Service/Organization

• Location

• Mishap Class

• Mishap Type

• Mishap Date

• Description of Mishap

The following data is mandatory for adding a new factor:

• 3rd Level Code

• Factor Description

The user must be able to enter several factors per mishap. The user interface

should make use of drop-down boxes to make input as simple as possible.

D. METHODOLOGY

The methodology used in this thesis research consisted of four phases: 1.

Requirements analysis, 2. System Foundation Development/Implementation, 3. HFACS-

ME Development/Implementation, and IV) Test and Analysis.

1. Phase I - Requirements Analysis

This phase consisted of initial analysis of the requirements for both systems.

"Use cases" were developed to model domain processes and foster a better understanding

of the system foundation requirements. A conceptual model was created to decompose

the problem domain in terms of identification of the concepts, attributes, and general

associations in the domain. Opportunities for code reuse, common database interface,

common schema, and improved performance were investigated. A comparison of

 12

Microsoft Access compatible database engines in terms of performance, upgradeability,

and scalability was conducted. Finally, an investigation of Microsoft development efforts

in the areas of Microsoft Office, Microsoft Visual Basic (VB), and Microsoft Visual Basic

for Applications (VBA) was conducted to determine best practices for ensuring future

compatibility.

2. Phase II - System Foundation Development/Implementation

In this phase, the development effort focused on client/server foundation analysis

and implementation. We developed sequence & collaboration diagrams for the typical

course of events of each use case related to the client/server foundation. These diagrams

were used to illustrate allocations of responsibilities to objects in the system

demonstrating how they interact via messages. Next we created Class diagrams based

upon these objects (how they connect) and the methods that each software class defined.

The end result of this phase was a functioning client / server architecture environment

upon which the HFACS-ME program implementation was developed.

3. Phase III - HFACS-ME Development/Implementation

In this phase we utilized the same methods as Phase II to develop working

prototypes for the HFACS-ME military and civilian programs. The end product included

installation software, an HTML help system, and system documentation.

4. Phase IV - Test and Analysis

This final phase was a wrap up of the research effort. During it we tested our

implementation on several different platforms, corrected several minor program

deficiencies, and investigated opportunities for future program enhancement.

E. ASSUMPTIONS

Throughout this thesis, We assumed that the reader is familiar with object

oriented programming techniques, has a general understanding of the HFACS-ME model,

and is familiar with basic Navy and DoD technical terminology.

F. DEFINITIONS

For the purpose of this thesis, the terms Human Factors Analysis Classification

System (HFACS) and Human Factors Analysis Classification System - Maintenance

Extension (HFACS-ME) will be used synonymously. The ME suffix more accurately

 13

describes the "up to date" implementation of the model which encompasses maintenance

related factors. In practice, however, the system is still referred to as HFACS.

All copyrighted material mentioned is © of their respective owners. This thesis

does not make any attempt to recommend any of the commercial products ment ioned or

used in the development of HFACS-ME.

G. ORGANIZATION

This thesis is divided into five chapters. Chapter I presented the problem,

background, stated the area of research, and described the methodology, and associated

research questions. Chapter II identifies Requirements Analysis through the use of use

cases and development of a conceptual model. Chapter III details the development of the

client - server foundation of the program. Chapter IV provides similar details for the

development of the actual HFACS-ME program. Chapter V provides a summary of

research efforts, prototype testing results, conclusions, and recommendations for future

enhancements.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

II. REQUIREMENTS ANALYSIS

A. OVERVIEW

In this chapter we describe the process used to define functional capabilities,

performance & design constraints, system interfaces, and phase allocation of work to the

HFACS system. This analysis provided a representation of information and function that

was eventually translated into data, architectural, and procedural design. Throughout this

requirements analysis process we focused on discovery, refinement, modeling, and

specification of the "big picture" HFACS system. We relied heavily on models created

using the Unified Modeling Language (UML) and use cases/use case diagrams for

gathering operational behavior and determining data content.

The UML is the successor to the various object oriented development tools

developed during the 1980’s and early 1990’s primarily combining the methods of three

key pioneers, Booch, Rumbaugh, and Jacobson [Ref. 3]. The UML is referred to as a

modeling language rather than a "method" language as it is primarily concerned with

using graphical methods over process language to express system design. Much of our

analysis in this chapter is graphical in nature and requires knowledge of the UML to

appreciate fully.

In addition to using the UML to identify the system features, we investigated

several other pertinent areas of the design using more traditional means. Types of data

access technologies, compatible programming languages, opportunities for code reuse,

and ways to improve performance to name a few. To this end, a comparison of Microsoft

Access compatible database engines in terms of performance, upgradeability, and

scalability was conducted. We also investigated current Microsoft development efforts to

determine best practices for ensuring future HFACS compatibility. In the end, these

steps allowed us to create the overarching conceptual model for our system, allocating

work to the remaining design phases as appropriate.

B. USE CASE ANALYSIS

In order to better understand requirements, domain processes for the HFACS were

expressed using use cases and use case diagrams. A use case represents a typical

 16

interaction between a user and the computer system. Use cases are used to capture some

user visible function as each one is manifested as some discrete goal for the user. The

use cases presented here were created using the most basic of investigation tools such as

observation and discussion with people familiar with the current HFACS system. We

were not concerned with intricate details of the system when we created these use cases,

merely a basic overview of each component/function. Our goal was to learn about how

the user really intended to use the system. Descriptions of the various Use Cases are as

follows.

Query Database

Add to Database

Edit Records
in DB

Change Server

Operator

Manager

Replace Database

HFACS-ME Use Case (Level 1)

Figure 2.1. HFACS-ME Use Cases (1st Level).

 17

1. Query Database

Query by Single
Field

Create a Report

Query by
Multiple Field

HFACS-ME
Summary

Create a
Graph

Operator

Query Database

Figure 2.2. Query Database Use Case.

Use Case: Query Database
Actors: Operator
Purpose: To query the HFACS-ME database for information, graphs, and reports
Overview: The operator needs to be able to query the database for specific information.

The operator has the ability to query on a single or multiple fields, obtain
summary information, create graphs, and create reports. The operator can
perform these functions after the SQL server is started.

Type: Primary and essential

a. Query by Single Field

Use Case: Query by Single Field
Actors: Operator
Purpose: To query the HFACS-ME database on single field
Overview: The operator has the ability to query database on any field of the database that

pertains to aircraft mishaps. These queries are pre-built. The HFACS-ME
system will retrieve any data item that meets the query conditions.

Type: Primary and Essential

Typical Course of Action
Actor Actions System Response

1. This use case begins with the operator selecting
to query the database.

2. Presents the operator with general areas to focus
the query. For example, aircraft type, aircraft
model, location of the mishaps, etc.

3. Operator selects one of the general areas to focus
the query

4. Present the operator with a choices to
specifically focus the query. For example, all
mishaps that involved F14s.

5. Operator selects the specific field to perform the
query operation

6. Forms the query and executes the query through
the SQL server.

 7. Displays the results to the operator

 18

b. Query by Multiple Fields

Use Case: Query by Multiple Fields
Actors: Operator
Purpose: To query the HFACS-ME database on multiple fields
Overview: The operator has the ability to query database on multiple fields of the database

that pertains to aircraft mishaps. These queries are pre-built. The HFACS-ME
system will retrieve any data item that meets the query conditions.

Type: Primary and Essential

Typical Course of Action
Actor Actions System Response

1. This use case begins with the operator selecting
to query the database.

2. Presents the operator with general areas to focus
the query. For example, aircraft type, aircraft
model, location of the mishaps, etc.

3. Operator selects one or more of the general areas
to focus the query

4. Present the operator with choices to specifically
focus the query for each general area. For example,
all mishaps that involved F14s at Pensacola, FL..

5. Operator selects the specific field of each general
area chosen to perform the query operation

6. Forms the query and executes the query through
the SQL server.

 7. Displays the results to the operator

c. Create a Report

Use Case: Create a Report
Actors: Operator
Purpose: To present the report of aircraft mishaps based on the criteria selected by the

operator
Overview: The operator has the ability to search the database to create reports on aircraft

mishaps. These reports will be created based on the specification chosen by
the operator. The HFACS-ME system will display the report based on these
specifications.

Type: Primary

Typical Course of Action
Actor Actions System Response

1. This use case begins with the operator selecting
to generate a report.

2. Presents the operator with choices for the type of
report to be created.

3. Operator selects one of the report formats (all
mishaps, sort by aircraft type, sort by organization,
sort by location, or sort in chronological order)

4. Query the database based upon the operator
selection to tabulate a report. Display the result to
the user.

 19

d. HFACS-ME Summary

Use Case: HFACS-ME Summary
Actors: Operator
Purpose: To display the contributing factors to mishaps and the amount the factors in

each level contribute to the mishap.
Overview: The operator has the ability to search the database to create summary

information of contributing factors on aircraft mishaps. These summary data
will be created based on the specification chosen by the operator. The
HFACS-ME system will display the information based on these specifications.
All possible factors will be displayed with the percentage of that factor being
involved in the accidents.

Type: Primary and Essential

Typical Course of Action
Actor Actions System Response

1. This use case begins with the operator selecting
to create a summary report of aircraft mishaps.

2. Presents the operator with summary data
considering all possible areas (aircraft type, aircraft
model, mishap class, etc.).

3. If the operator desires summary data on certain
types of mishaps, the operator can select the specific
types aircraft mishaps to include in the summary
data.

4. Query the database to include only those types of
mishaps desired by the operator and present a
summary report

e. Create a Graph

Use Case: Create a graph
Actors: Operator
Purpose: To display the graphical chart of aircraft mishaps based on the criteria selected

by the operator
Overview: The operator has the ability to search the database to create graphical charts on

aircraft mishaps. These charts will be created based on the specification
chosen by the operator. The HFACS-ME system will display the chart based
on these specifications.

Type: Non-Critical

Typical Course of Action
Actor Actions System Response

1. This use case begins with the operator selecting
to create a graph of aircraft mishaps.

2. Presents the operator with choices of x and y-
axis components. These components are general in
nature such as aircraft model, aircraft type, year of
mishap, etc.

3. Operator selects one of the general components
for the x and y-axis of the graph

4. Present the operator with choices of specific data
to be included in the graph. These are specific
items such as F14, F18, year 1996, etc.

5. Operator selects the specific item(s) to be
included in the graph for both x and y-axis.

6. Query the database to obtain data and display the
result in a graphic nature.

 20

2. Add to Database

Add a Mishap

Add Factors
Operator

Add to Database

Figure 2.3. Add to Database Use Case.

Use Case: Add to Database
Actors: Operator
Purpose: To add mishap information at the start of the investigation of the accident and

to add factors that contributed to the mishap
Overview: The operator has the ability to input into the database data that pertains to the

mishap. The operator also has the ability to input contributing factors that led
to the mishap. The operator can perform these functions after the SQL server
is started.

Type: Primary and essential

a. Add a mishap

Use Case: Add a Mishap
Actors: Operator
Purpose: To add mishap data into the database
Overview: As new aircraft mishaps occur, the operator has the ability to add mishap data

into the database. The data includes date of the mishap, description, cost, type
of aircraft, model of the aircraft, location, category of the mishap, and
organization involved.

Type: Primary and Essential

Typical Course of Action
Actor Actions System Response

1. This use case begins with the occurrence of a
new aircraft mishap. Operator selects to add a new
mishap into the database.

2. Requests all pertinent information for this
mishap. The information required includes: data of
mishap, aircraft type, mishap type, mishap class,
organization, category, location, whether any
crewmen were injured, damage to the aircraft, and
description of the incident.

3. Operator provides the information required. 4. Adds the mishap incident into the database and
inform the operator of the successful transaction.

 4. If the record could not be added, inform the
operator of the failed transaction.

 21

b. Add Factor

Use Case: Add Factors
Actors: Operator
Purpose: To add factors contributing to the mishap into the database
Overview: As an investigation commences, factors leading to the mishap may be

discovered. As the factors are discovered, the operator has the ability to add
contributing factor data into the database for a specific mishap. The data
includes the factors from all three levels of categories (first order, second
order, and third order).

Type: Primary and Essential

Typical Course of Action
Actor Actions System Response

1. This use case begins with the discovery of a
contributing factor to the aircraft mishap. Operator
selects to add a new mishap into the database.

2. Queries the operator for the factor from the first
order factors

3. Operator selects one factor from the first order
factors that contributed to the accident.

4. Queries the operator for the factor from the
second order factors. These factors depend upon
the first order factor selected.

5. Operator selects one factor from the second order
factors that contributed to the accident.

6. Queries the operator for the factor from the third
order factors. These factors depend upon the
second order factor selected.

7. Operator selects one factor from the third order
factors that contributed to the accident. Operator
also provides a brief description of the factor.

8. Updates the database by inserting the new factor
in the database for the record containing this aircraft
mishap. Queries the operator for additional factors.

9. Operator indicates he has additional factors or
not

10. Repeat sequences 6 to 10 if additional factors
need to be added.

Alternative Courses
 10. Operator indicates that new factor is in a

different second order factor category or different
fis t order factor category. Repeat sequences 2-10 as
needed.

3. Edit Records in Database

Edit a Mishap

Edit a Factor
Operator

Edit a Record in Database

Figure 2.4. Edit a Record in Database Use Case.

 22

Use Case: Edit
Actors: Operator
Purpose: To edit the mishap information as the investigation of the accident gains

information and to edit the factors that contributed to the mishap
Overview: The operator has the ability to change the data in the database data that pertains

to the mishap. The operator also has the ability to edit the contributing factors
that led to the mishap. The operator can perform these functions as additional
information is obtained.

Type: Primary and essential

a. Edit Mishap

Use Case: Edit a Mishap***
Actors: Operator
Purpose: To edit a mishap incident from the database.
Overview: As new information is discovered or an error in the data is discovered about an

aircraft mishap incident that already exists in the database, the operator has the
ability to edit the mishap data.

Type: Primary and Essential

Typical Course of Action
Actor Actions System Response

1. This use case begins with the discovery of new
information or error in existing information of an
aircraft mishap incident that exists in the database.
Operator requests a query to search for the aircraft
mishap incident in question.

2. Requests the incident number or the type of
query to search for the incident. For example, select
all mishaps that occurred at this location during this
year.

3. Operator selects the incident that needs to be
edited.

4. Display all pertinent information about this
incident. Display the incident number, data of
mishap, aircraft type, mishap type, mishap class,
organization, category, location, whether any
crewmen were injured, damage to the aircraft, and
description of the incident, any factors that
contributed to the incident that has been entered
previously.

5. Operator makes adjustments to the data item that
needs to be corrected or created.

6. Update the database with the new information.
Inform the operator of success or failure of the
update.

 23

b. Edit Factor

Use Case: Edit Factors***
Actors: Operator
Purpose: To edit factors in an aircraft mishap incident from the database.
Overview: As an error in the data is discovered about a contributing factor to an aircraft

mishap incident that already exists in the database, the operator has the ability
to edit the factor data.

Type: Primary and Essential

Typical Course of Action
Actor Actions System Response

1. This use case begins with the discovery of an
error in existing information of an aircraft mishap
incident that exists in the database.

2. Display the mishap incident and all of its
contributing factors.

3. Operator selects the factor or factors that needs
to be edited.

4. Display the information about the factor.
Display factor description and its first order factor
grandparent, second order factor parent.

5. Operator makes adjustments to the description or
indicates that the factor’s parent needs to be
changed.

6. Query the operator for first order factor, second
order factor, and third order factor as necessary.

7. Selects the first order factor, second order factor,
and third order factor as necessary.

8. Update the database with the new information.

4. Change Server

Use Case: Change Server
Actors: Operator
Purpose: To change the SQL server
Overview: The operator has the ability change SQL server without closing the HFACS-

ME program
Type: Primary

Typical Course of Action
Actor Actions System Response

1. This use case begins with the operator choosing
to change the active server.

2. Disconnect to the current server. Request the
address and name of the new server.

3. Type in or select a new server 4. Establish connection to the selected server.
 5. Inform the operator of successful change or

failed change.

 24

5. Replace the Database

Replace the
Database via

FTP

Operator Manager

Replace the Database

Replace the
Database via

Disk

Figure 2.5. Replace the Database Use Case.

Use Case: Replace Database
Actors: Operator, Manager
Purpose: To replace or update the existing database with a new database
Overview: Once the manager has obtained a new HFACS-ME database, the operator has

the ability to update or replace the existing database with the new database.
The operator has the ability to perform this via FTP or via disk operation.

Type: Primary

 25

a. Replace the Database via FTP

Use Case: Replace the Database via FTP
Actors: Operator, Manager
Purpose: To replace the existing database with new current version of the database via FTP

mechanism.
O verview: As many mishaps are added to the database, the local databases may not be the same

throughout the location. To bring all databases to the same version, a new database can be
uploaded through the network.

Type: Primary

Typical Course of Action
Actor Actions System Response

1. This use case begins with the new database being
available at a central site provided by the manager. The
manager informs all clients that a new database is available
for upload.

2. The operator directs the system to upload the new
database.

3. Disconnect all concurrent users on the local system.

 4. Creates a backup of the existing database and stores it in
the file system.

 5. Downloads the database from the central site and stores it
on the local system.

 6. Uploads the database and starts the server.
 7. Inform the operator of the successful or failed operation.

b. Replace the Database via Disk

Use Case: Update the database from National HQ Master Files
Actors: Operator, Manager
Purpose: To replace the existing database with the master database
Overview: The HFACS-ME system’s database can be updated (replaced) by the master database to

bring all organizations to common database. This can be done through network download or
via disc operation.

Type: Primary and Essential

Typical Course of Action
Actor Actions System Response
1. This use case begins with the master database being
available provided by the manager. The manager informs all
clients that a new database is available for upload or a disc is
available with the database.

2. The operator directs the system to upload the new
database.

3. Request the operator for the method of the replacement
operation.

4. The operator provides network operation method. 5. Disconnect all concurrent users on the local system.
 6. Creates a backup of the existing database and stores it in

the file system.
 7. Downloads the database from the central site and stores it

on the local system.
 8. Uploads the database and starts the server.
 9. Inform the operator of the successful or failed operation.

Alternative Courses
4. The operator provides disc operation method. 4.1 Request file location from the operator.
4.2 Operator provides the database location (directory)

 26

C. CLASS-RESPONSIBILITY-COLLABORATION (CRC) CARDS

The use cases identified above are really very high- level execution scenarios for

the HFACS program. The next step in our analysis required us to take these scenarios

and identify the objects in each one. We wanted to focus on the actions that these objects

would be responsible for so that we could develop our classes from them. As part our

literature review, we came across Ward Cunningham and Kent Beck's [Ref. 4] class-

responsibility-collaboration (CRC) card methodology. The CRC card method for

developing classes uses 4" X 6" index cards to map responsibilities to objects. A

"responsibility" is a description of the purpose of the class. The idea is to try to get away

from a description of data and processes by capturing the purpose of the class in a few

sentences. The choice of a card was deliberate - we chose not to allow more than what

would fit on a single card to represent a single object.

This decision to use CRC cards proved very fruitful. Our CRC cards have the

class name in the upper- left hand corner, a bullet- list of responsibilities under it in the

left two-thirds of the card, and the list of other classes needed to fulfill that responsibility

in the right third of the card. This simple method of assigning responsibilities gave us

great insight into the links between classes, but still at a high level -- we did not get

bogged down in the details. Most useful was the ability to discuss many different design

possibilities without writing a line of code. By accenting responsibilities instead of data

and methods we were able to develop a fairly thorough understanding the behavior for

each class. By grouping the cards together, we could begin to visualize what would

become our packages (actually, dynamic link libraries). We could identify classes that

had been given too much responsibility and reassign those responsibilities to other

classes, where appropriate. The most interesting discovery made in creating these cards

was the greatly apparent distinction between the database platform objects and HFACS

program objects. It was very obvious to us that there were certain responsibilities that

were specific to each client and others that were the identical for all clients. Our CRC

cards can be found at Appendix A.

 27

D. MICROSOFT ACCESS & DATABASE ENGINES

The Aviation Safety School system requirements specified a Microsoft Access

2000 implementation of the new HFACS system. In our opinion, Microsoft Access 2000

is a very powerful and deceptively complex program that can function as a database

engine, database client, or both. This section discusses the different functionalities of

Access 2000 and the reasoning we used to determine its HFACS implementation.

Microsoft Access has built- in functionality to create desktop applications with

forms, reports, and embedded support for Visual Basic for Applications (VBA). In

addition, the data in an Access database can be manipulated using several different

programming languages, active server pages (ASPs) via the web, and via third party add-

in tools. A key feature of Access over other databases and development tools is its ease

of use - it is a very effective rapid application development (RAD) platform. When

compared with databases such as Oracle, Access can be (depending upon implementation

options) magnitudes simpler to use for creating similar applications.

A new feature of Access 2000 that made it appealing for the HFACS project is the

ability to use more than one type of database engine. A database engine is the part of a

database management system (DBMS) that actually stores and retrieves data. Access

2000 provides support for both the Microsoft JET database engine and the Microsoft SQL

Server engine. This is a key distinction. Access formerly allowed only one choice of

database engine: JET. The main problem with JET is that it is not a client/server capable

engine. It is primarily a file server. This means that anytime a client wants to request

something from a JET database everything has to be done on the client-side. The result is

a lot of network traffic and unacceptable response times for more than only a handful of

simultaneous users. With the release of Office 2000, however, Microsoft provided a

royalty free version of the SQL Server engine capable of running on a desktop computer.

This change allowed an Access solution the ability to operate as a stand-alone application

using the same engine as the full version of SQL Server -- it is 100 percent compatible

because it is the same engine. Upgrading from a desktop application to a server-based

application is no longer an issue because the engine is the same.

 28

One confusing aspect of the standalone engine is the difference in naming

conventions between various versions of SQL Server. The SQL Server 6.5 and 7.0

compliant version is called the Microsoft Data Engine (MSDE), while the SQL Server

2000 compatible variant is called Microsoft SQL Server Desktop Edition. Both versions

of the engine should offer the same functionality when used with Access, but this is not

entirely true, as will be described in Chapter III. For the remainder of this thesis, in order

to provide greater emphasis on the distinction between full SQL Server and the Desktop

editions, we will refer to both the SQL 7.0 and 2000 versions of the desktop engine as

MSDE unless otherwise stated.

In our research we found that it is a very common requirement to have a JET

based database and desire to migrate it to a more robust database engine - namely

Microsoft SQL Server 7.0 or SQL Server 2000. We also found that automated migration

tools designed to port JET databases over to SQL server are useful only for very simple

databases. We experimented with using the Microsoft Access "Upsizing wizard" on both

the military and civilian versions of the existing HFACS system with very poor results.

Structured Query Language written in Access using JET did not transfer correctly.

Functions written in VBA did not transfer correctly. In addition, the data types used by

JET are different from those in SQL Server and they did not transfer properly. Finally,

Access uses "queries" in place of stored procedures and queries did not transfer at all. To

put it simply, the JET database engine is not scaleable and was ruled out as a viable

option for the new HFACS very early in the requirements analysis process.

E. DATA ACCESS TECHNOLOGIES

Following the decision to use Microsoft SQL Server as the database engine for

HFACS, we realized that the majority of our personal experience with database design

dealt with Microsoft JET. Our review of MSDE indicated that it had a lot to offer in

terms of use with Access and Visual Basic. For example, the desktop engine supports

record- level locking, transaction logs, operating-system integrated security under

Windows 2000, and many other advanced features of full SQL Server (like replication) --

all from Visual Basic and VBA. In fact, we found that the SQL Server engine actually

had a plethora of options, most formidable of which was the selection of programming

 29

interface to access the data in it. We feel that most of this complexity is unnecessary and

directly related to Microsoft's proprietary implementation of object-oriented data access

methods.

In the early 90's, the Object Management Group defined methods for the

Common Object Request Broker Architecture (CORBA) that were designed to create an

industry standard for universal data access using object-oriented methods [Ref. 7].

Microsoft, however, has its own competing standards called the Distributed Component

Object Model (DCOM) and Component Object Model (COM). The COM is a binary

standard which defines how an object should present itself to the system, regardless of

programming language used. COM programs are referred to as “components.”

Generally COM components are compiled into Dynamic Link Library (.DLL) format.

The DCOM is an extension of COM, which allows object creation to span over a network

in a client-server environment, hence the “distributed” prefix. The Microsoft SQL Server

engine supports DCOM, COM, and other legacy data access technologies. The most

prolific of which are: Object Linking & Embedding for Databases (OLE DB), ActiveX

Data Objects (ADO), Open Database Connectivity (ODBC), Data Access Objects

(DAO), Remote Data Objects (RDO), SQL Direct Management Objects (SQLDMO), and

several lesser variants. Each of these technologies offers various functionalities.

Selection of the method(s) that HFACS would use was a critical decision as the wrong

choice could impose limitations in functionality and/or compatibility later in our

development process [Refs. 7, 14]. A complete study of all these object models is

beyond the scope of this paper, so only a brief description of the major ones is provided

here. For more information consult the Microsoft Universal Data Access web-site at:

http://www.microsoft.com/data/.

1. OLE DB

Object Linking & Embedding for Databases comprises a model consisting of data

providers and data consumers. The providers contain and expose data, while the

consumers use data and services. Basically, OLE DB is capable of providing data from a

variety of sources by using Microsoft COM. OLE DB is just a set of these COM

components designed specifically to access data as producers and consumers. This is

 30

particularly powerful because developers can build their own components and include

them as part of the interface -- as long as they use development tools compatible with

Microsoft COM. OLE DB provides the underlying layer of abstraction that enables most

of the other technologies in the Microsoft Universal Data Access initiative. Through this

layer of separation, OLE DB enabled applications can improve data access by allowing

dynamic binding to lots of different data stores. A very interesting capability associated

with this technology, is that once bound, OLE DB components can provide services, like

SQL querying, against data sources that normally cannot perform the processing

themselves (like flat text files). Figure 2.6 illustrates the architecture.

OLE DB Providers/Consumers

Oracle

Sybase
Informix

Excel

Word

Outlook

Custom Built

Data Sources

Connections
(ADO, ODBC, .NET)

OLE DB Providers/Consumers

Oracle

Sybase
Informix

Excel

Word

Outlook

Custom Built

Data Sources

Connections
(ADO, ODBC, .NET)

OLE DB Providers/Consumers

Oracle

Sybase
Informix

Excel

Word

Outlook

Custom Built

Data Sources

Oracle

Sybase
Informix

Excel

Word

Outlook

Custom Built

Data Sources

Connections
(ADO, ODBC, .NET)

Figure 2.6. OLE DB Architecture.

2. ADO

ActiveX Data Objects support a variety of needs, including the creation of front-

end database clients and middle-tier applications that provide the "business rules" for

interaction with a back-end databases or other applications such as an Internet browser.

Microsoft touts the ADO programming model as "the best of the existing Microsoft data

access programming models [Ref. 15]." This is primarily due to its relative ease of use,

speed, low memory overhead, small disk footprint, and tight coupling with OLE DB.

Connection objects in ADO are easy to use as are command objects and recordset

objects. Where OLE DB is concerned more with accessing data sources, ADO is

 31

concerned with mapping the data to visual controls, like data grids and combo-boxes --

which compliments Microsoft visual development languages such as Visual Basic and

Visual C++.

3. ODBC

The Open Database Connectivity (ODBC) interface has been around for many

years. ODBC uses SQL to access data based upon drivers. Drivers are vender specific

interfaces between an application and a specific brand of database. ODBC drivers exist

for everything from ASCII text files, mid-size databases like FoxPro, up to enterprise

databases like Oracle. A problem with ODBC is that not all drivers implement all the

functions of ANSI SQL, so the level of support you get can vary based upon vendor.

4. DAO

Data Access Object technology was developed in 1994 to allow Visual Basic 3.0

to access and manipulate data in local or remote databases. DAO was the fir st object-

oriented interface that exposed the underpinnings of Microsoft JET and allowed Visual

Basic developers to directly connect to Access tables - as well as other databases -

through ODBC. This was a very powerful feature, but Microsoft is currently only

providing support for it so that applications can be backwards compatible. When

working with JET, there are certain functions that DAO can provide that the other

technologies cannot, but the risk of obsolescence is great and this technology should be

avoided. DAO is suited best for either single-system or small multi-user applications.

5. RDO

Microsoft first released the Remote Data Objects model in 1995 to support Visual

Basic 4.0 [Ref. 14]. RDO was developed to provide object-oriented methods to access

high-end ODBC relational data sources like SQL Server or Oracle. RDO provides the

properties and methods needed to access "more complex" stored procedures and result

sets. The idea behind RDO was it could save Visual Basic programmers a great deal of

time by allowing them to access the RDO interface without directly coding the ODBC

API. In the past, RDO has proven to be a popular interface for the large relational

databases. Similar to DAO, however, Microsoft is currently only providing support for it

so that applications can be backwards compatible.

 32

6. SQLDMO

The SQL Distributed Management Object interface is a proprietary feature of

SQL Server. The SQLDMO.DLL communicates with SQLSVC.DLL (the database

abstraction module), which accesses ODBC32.DLL, which in turn implements the SQL

Server ODBC driver. As evidence of its power, if you are familiar with the SQL Server

Enterprise Manager, much of the functionality you see in it was implemented with

SQLDMO [Ref. 21]. SQLDMO provides management functions for SQL Server at a

very low level. For example, instances of the server can be started and stopped,

regardless of connection state -- you can stop the server even if users are logged on. You

can add users, set permissions, add databases, and tables. In addition to management

functions, SQLDMO can be used to run stored procedures and perform data access type

functions. The problem with SQLDMO is that it is not easily accessible via the Internet

and therefore is undesirable for other than management functions. Microsoft is phasing

out SQLDMO in favor of Windows Management Instrumentation (WMI) type interfaces.

The purpose of WMI is to define a non-proprietary set of enterprise management

specifications. These specifications allow management information to be shared between

applications that run on different operating systems Luckily, WMI currently prescribes

standards that are backwards compatible with SQLDMO.

The brief overview you just read is just the tip of a very large iceberg when it

comes to evaluating Microsoft data access technologies. We found this part our research

very troublesome and overly complicated. In the end, we discovered that SQL Server

comes with its own native OLE DB provider, which means that SQL Server does not

have to be paired with a web-server to provide support for multiple tier database solutions

- as long as you choose OLE DB compliant technologies to access the data. Multiple tier

solutions will be discussed more in chapter IV, but we mention it here to demonstrate that

scalability concerns were addressed in all aspects of our design. Since OLE DB is

natively part of the SQL environment and such a big part of Microsoft's current Universal

Data Access strategy, it made sense to use it over ODBC. In addition, since RDO and

DAO both seemed to be legacy technologies whose functionality is slowly being

consumed by ADO, it made sense to use ADO wherever possible. We recognized,

 33

however, that in dealing with MSDE as the engine for desktop versions of HFACS, we

would need access to management functions beyond the capability of ADO. For these

needs we would use SQLDMO to access the SQL engine through its ODBC driver.

These facts, coupled with the Microsoft and several third party recommendations

to use ADO and OLE DB led us to select them as our primary data access methods

wherever possible. The new HFACS system actually uses four of these technologies:

OLE DB, ADO, ODBC, and SQLDMO, which will be expanded upon throughout this

paper.

F. PROGRAMMING MICROSOFT ACCESS AND SQL SERVER

Microsoft Access has a history of notorious incompatibilities between versions.

Since 1993, Access has undergone fundamental changes with each new release. Access

2.0 applications used Access Basic rather than VBA and did not convert to Access 95

format. Access 95 implemented many new technologies and did not always convert to

Access 97 format. Our personal experience with trying to upsize old versions of HFACS

from Access 97 to Access 2000 clearly demonstrated that there were problems with it as

well. Based on this history alone we concluded that the next version of Access would no

doubt have similar problems. The requirement for an Access based solution from our

sponsor was firm and at this point seemed somewhat constraining. The search for a

method to lessen the impact of version changes became paramount.

As mentioned earlier, Access has embedded support for Visual Basic for

Applications. The SQL engine, however, is accessible via any language capable of

creating COM objects. This realization presented a unique option for mitigating the

effects of future Access version incompatibilities. Using Visual Basic or C++, we could

design ActiveX object-oriented components that encapsulated much of the code that

would normally be written within Access. These compiled components would reside

outside of Access theoretically making them less susceptible to version changes and

maximizing potential for code reuse. Access would just be a client shell and all business

logic would be placed in these external components. The beauty of this approach is that

the RAD methods of Access used to create forms, reports, and controls were still

available. In addition, this approach is in keeping with the migration path of a small-

 34

scale application to a larger enterprise level one using OLE DB and DCOM. The

location of the external components (either client-side or server-side) would define the

architecture of the system (3-tier or n-tier).

Removing the business logic from Access allows HFACS to grow by enabling

modification of component code without making changes (or many changes) to the client

code in Access or the database elements in SQL Server. Since code in the components is

compiled, changes in versions of the programming language used to create them are

much less significant in over the lifespan of the program. We knew this would be

especially significant for HFACS because of Microsoft's upcoming release of new

technologies like C# and Visual Basic .NET. Regardless of the technology changes

associated with these upcoming releases, current versions of C++ and Visual Basic

should still be able to create compiled components compatible with new versions of

Access and SQL Server. Since code is removed from the front and back-end Microsoft

products, we believe that components are much less likely to suffer from versioning

issues. The disadvantage of all this of course, is the inherent complexity in creating these

components. As alluded to in the previous sections, the vast array of features in Access

and SQL Server make creating components to take advantage of these products a very

ambitious goal.

Based on our decision to implement components, our next decision involved

selection of a COM compatible programming language. In keeping with the requirement

for a Microsoft based solution our choices were either Visual Basic 6.0 (VB) or Visual

C++. Both C++ and VB are capable of implementing the four data access technologies

that we knew we would need. Since Access provides inherent support for VBA and

Visual Basic 6.0 is a superset of this technology, VB could provide a single language for

use in both Access and the components. C++, on the other hand, offered greater support

in terms of threading (which will be discussed further in Chapter III). A major

disadvantage of C++, however, was its added complexity in a program designed for

RAD. In the end, the idea of a using VB in all coding for HFACS was truly the key

factor in weighing advantages and disadvantages. Our final choice for programming

language was Microsoft Visual Basic 6.0 using Service Pack 5.

 35

G. MICROSOFT DEVELOPMENT EFFORTS

Despite our vision of immunity from version changes in Visual Basic, Access, and

SQL Server, we conducted a review of Microsoft development efforts to ensure our

design would comply with the product manufacturers existing interoperability guidance.

Our findings:

1. Access 2002 [Ref. 16]

According to Microsoft, Access 2002 databases (based on the JET database

engine) will work with two database file formats — Access 2000 and Access 2002. In

Access 2002, you will be able to modify data and make design changes to an Access 2000

database. During an Access 2002 rollout, Microsoft recommends using the Access 2000

file format. In this mixed environment, both Access 2000 and 2002 users will have a

default file format of 2000. Features that are new in Access 2002 will be available when

using an Access 2000 file in Access 2002, but will not be available when the same file is

used in Access 2000. When a file is opened in Access 2000, any functionality specific to

Access 2002 is simply ignored. In a mixed file format environment, Microsoft strongly

recommends design and update of all databases using Access 2000. If designed with

Access 2002 using the Access 2002 file format, users cannot open the database with

Access 2000. Although not specifically stated by Microsoft, it is assumed that features

compatible with a SQL Server engine will be similarly compatible with both 2000 and

2002 file formats, therefore HFACS should be compatible.

In addition to the file format changes, Access 2002 will support both ANSI-89

SQL (also called JET SQL) and ANSI-92 SQL, which have new and different features.

The two ANSI SQL query modes, ANSI-89 and ANSI-92, are not compatible. Since

HFACS uses SQL Server as its database engine, our implementation already uses ANSI-

92 SQL and this should not be a factor. Finally, Office 2002 will come with the SQL

Server 2000 Desktop Engine, not MSDE 1.0. Although both of these database engines

will be able to coexist on a single computer, they are not 100% compatible. This will be

discussed in more detail in Chapter III).

 36

2. Visual Basic.NET [Ref. 17]

Microsoft Visual Basic.NET will be a complete rebuild of the current version of

VB. Visual Basic.NET will take a major step toward making Visual Basic a fully

featured object oriented language with new features including full object-oriented design

capabilities and free-threading. Several limitations of VB 6.0 that VB .NET is planned to

remedy were problems in our development of HFACS. Workarounds will be discussed

in subsequent chapters. For this reason, we believe upgrade of the HFACS components

to VB .NET when it is released will be desirable. Microsoft states that "Visual

Basic.NET will open and upgrade Visual Basic 6.0 projects to Visual Basic.NET

technologies, but in most cases you will need to make some modifications to your

projects after bringing them into Visual Basic.NET." [Ref. 18] Microsoft recommends a

host of considerations to enable future upgrade to VB .NET [Ref. 18], the most

significant of which are discussed below:

• Use of early binding of variables. Objects should be declared as the data
type that they really are rather than as type Object. In VB .NET late-
bound objects can introduce problems when resolving default properties.
Additionally, the Variant data type is replaced by Object, so Microsoft
recommends discontinuing its use. Our HFACS code uses early binding
wherever possible.

• Use of ADO for data access. VB .NET will provide support for DAO,
RDO, and ADO in code with some modification. However, Visual
Basic.NET does not support DAO and RDO data binding to controls.
Since HFACS does not use RDO or DAO, modifications should be
relatively simple.

• Avoidance of the Double data type for storing dates. HFACS uses the
Date data type for dates.

• Avoidance of fixed-length strings in user-defined types. HFACS does not
implement any user defined types, only user defined Classes.

• Resolve Parameterless Default Properties using dot-notation. HFACS
uses complete object property references, so this should not be a problem.

• Use of enumerated constants instead of underlying values. Wherever
possible HFACS uses the enumerated constants, however, there are some
instances where zero resolves to null for which zero has no enumerated
value.

• Use special syntax for declaring fixed arrays. The current method for
declaring fixed arrays (e.g. myArray(5) As Integer) will not work with

 37

VB.NET. Syntax in the following form should be used instead: Dim
MyVariable As MyType; ReDim MyVariable.MyArray(5) As Integer.
HFACS uses this recommended syntax.

• Avoid Legacy Features. Because they have been removed from the
language, the following keywords should be avoided: Def<type>,
Computed GoTo/GoSub, GoSub/Return, Option Base 0|1, VarPtr,
ObjPtr, StrPtr, and Lset. HFACS uses none of these keywords except
On Error GoTo for error handling – for which there is no Microsoft
recommendation to remedy.

As previously stated, the Visual Basic 6.0 format should remain viable as long as

versions of Access and SQL Server provide support for COM components -- so migration

of HFACS to VB .NET isn’t mandatory, just desirable at some point. Interesting to note

that a parallel situation exists for the Visual C++ programming language, as Microsoft

has similar plans for migration to C# which also implements .NET technology. For this

reason, our selection of Visual Basic as programming language remained intact.

3. SQL Server

Microsoft released the SQL Server 2000 family of products less than six months

prior to our development effort. No service packs existed and there was no publicly

accessible information related to follow on versions available at that time.

H. THE CONCEPTUAL MODEL

The use cases and CRC cards developed in our requirements analysis effort

coupled with our research of data access technologies, programming languages, and

trends in Microsoft products enabled us to develop a vision of our HFACS system.

Armed with this information we set about creating a conceptual framework for the design

of the system. As part of this process we inferred the following:

• HFACS should consist of a Microsoft Access client application using
external compiled components to encapsulate business processes wherever
possible. This would provide greater opportunity for code reuse and
mitigate the effects of version changes in Access.

• HFACS would implement the SQL database engine and therefore should
be developed so as to connect to an instance of MSDE as well as true SQL
server. In order to facilitate differences in these connections, a component
would be needed to perform management functions such as installation of
the programs, installation of the database, logon options, and starting and
stopping the server. Management functions of this depth have to be
performed using SQLDMO and are specific to each client, therefore, this

 38

component must also reside on the client. Figure 2.7 illustrates the
conceptual model for this component.

• The business processes associated with the actual manipulation of the
objects in the database were not specific to each client. Based upon our
review of DCOM and COM, we recognized that to provide scalability for
HFACS, further investigation into which technology to implement would
be needed. What we could conclude, however, is that these processes
needed to be encapsulated in a component separate from the connection
component. Furthermore, this component should not include any user
forms or GUI components making it more abstract and versatile. Figure
2.8 illustrates the conceptual model for this business- logic component.

iTypeLogon

HFACS
Connection

INIFile INIFile
Controller

Update
Controller

MSDE

HFACS Main

Disk Update FTP Update

ODB Logon

Figure 2.7. Conceptual Model for the Connection Component.

 39

Aircraft Database
Type

Factors Mishap Type

Mishap
Factors

Mishaps

Mishap
Location

Mishap Type

Organization

Query Base
Class

Add

Delete

Find

Figure 2.8. Conceptual Model for the Business -Logic Component.

From these findings it became clear that the development effort should be divided

into two phases. Phase I should focus on development and implementation of the

HFACS Connection component. Phase II should do the same for the HFACS business

logic component. The deve lopment of the connection component was to be executed first

because it would involve creating the foundation and environment for the business logic

component to operate in. In addition to creation of the connection component and the

inherent connection functions, Phase I would involve creating the installation programs

needed to deploy and configure all the pieces of this operational environment on a wide

array of platforms supporting various editions of SQL Server and Windows operating

system. If possib le, this component should be capable of working with different versions

of SQL Server as well as different editions.

Upon completion of Phase I, we envisioned a much broader understanding of the

SQL engine, which would help us in developing database schema and selecting an

architecture (DCOM, COM, 3-tier, or n-tier) for the business logic component in phase

II. The high- level conceptual architecture is illustrated below.

 40

Business-Logic
Functions

Voter

Connection
Functions

Voter

Access Client

Voter

Client Host To Be Determined

Business-Logic
Functions

Voter

Business-Logic
Functions

Voter

Connection
Functions

Voter

Connection
Functions

Voter

Access Client

Voter

Access Client

Voter

Client Host To Be Determined

Figure 2.9. Conceptual Architecture at the End of Requirements Analysis.

Within phases, we planned to use Spiral Development Model (SDM) [Ref. 19]

techniques. The SDM made the most sense to us because although requirements had

been fairly well defined for HFACS, there was still a substantial amount of risk

associated with our lack of experience with SQL Server, object oriented programming

with Visual Basic, and the Component Object Model. In addition, we knew that in the

course of our development process, requirements might change. For instance, new

requirements for the commercial aircraft version of HFACs might arise. In addition,

there was a good chance that one of the other development groups could make

requirement changes. The SDM provides built- in methods for mitigating these risks

through its use of development stages. Each stage would be a normal development

project producing a superset of the prior stage and yet a subset of the final system.

Planning for each successive stage would be structured to exploit the experiences of the

former stages and to reduce perceived risk factors in the current and future iterations.

 41

III. HFACS CONNECTIVITY COMPONENT DEVELOPMENT

A. OVERVIEW

This chapter provides a detailed description of the design and implementation of

the HFACS connectivity component. The component was constructed as an ActiveX

dynamic link library, which is included as a reference in the Access client program.

Access Client programs that are used in conjunction with the SQL Server engine are

called Access Data Projects and can be identified by their ".adp" file extension.

We began development of this component by refining its conceptual model

through interaction diagrams using the UML. Two types of interaction diagram were

used in this process: sequence diagrams and collaboration diagrams. Both types of

diagrams allowed us to refine our conceptual model into class diagrams. Once class

diagrams were in place, we identified stages of spiral development and began coding.

The culmination of this phase was the HFACS installation program and

connection dynamic link library incorporating the functionality needed to install

Microsoft Access Runtime, the SQL Server engine, the Access client data project file, an

initialization file used for maintaining client installation settings, a separate compiled

FTP server, and the methods to install and replace instances of the HFACS database.

B. SEQUENCE DIAGRAMS

Our first step in refining the conceptual model was to create Sequence diagrams

for the typical course of events of critical use cases in order to better understand system

behavior. The sequence diagrams that follow illustrate the actor interactions and the

operations initiated by them, as well as, their order.

 42

1. Change Server

:Operator :HFACS-ME

new_HFACSConnection()

disconnect()

selectServerName()

setServerName()

connect()

success()

restartMSDE()

Figure 3.1. Change Server Sequence Diagram.

2. Replace the Database via FTP

:Operator :HFACS-ME

new_HFACSConnection()

disconnect()

selectServerName()

setServerName()

connect()

success()

restartMSDE()

Figure 3.2. Replace the Database via FTP Sequence Diagram.

 43

3. Replace the Database via Disk

:Manager :Operator :HFACS-ME

newMaster(true)
getUpdateDisc()

performDiscUpdate()
success()

Figure 3.3. Replace the Database via Disk Sequence Diagram.

C. COLLABORATION DIAGRAMS

Analysis of our Sequence diagrams allowed us to create Collaboration diagrams

to illustrate allocation of responsibilities to objects in the system, specifically

demonstrating how they interact via messages. The diagrams that follow provided the

level of detail needed isolate the key messaging functions between objects in the

component.

1. Change Server

HFACS_
Connection

O1:Operator

M1:MSDE

1: disconnect()

O1:Operator

2: selectServerName()

3: setServerName(serverID)

4: connect(loginID, password)

5: restartMSDE()

6: success()

M1:MSDE

Figure 3.4. Change Server Collaboration Diagram.

 44

2. Replace the Database via FTP

:Operator UpdateController

F1:FTPUpdate

M1:MSDE F1:FTPUpdate

F1:FTPUpdate

F1:FTPUpdate

M1:MSDE

1: getUpdateFTP()

2: disconnect()

3: dropDB(dbName)

4: connect(loginID, password)

5: gotFileDoNext()

6: gotFileLast()

7: restartMSDE()

8:success()

Figure 3.5. Replace the Database via FTP Collaboration Diagram.

3. Replace the Database via Disk

:UpdateController :Operator

1: getUpdateDisc()

:DiskUpdate

2: performDiskUpdate()

3: success()

Figure 3.6. Replace the Database via FTP Collaboration Diagram.

D. CLASS DIAGRAMS

The information gleaned from the Collaboration diagrams, empowered us with

the knowledge needed to refine our conceptual model. Figure 3.7 illustrates an

intermediate level view of the key classes. The descriptions that follow provide abridged

definitions and explanations for these key classes. They are provided here to document

 45

their general functionality in prose format and provide a basis for subsequent discussion

of development issues. Detailed HFACS connection component class diagrams

illustrating all methods, as well as, complete descriptions of the actual classes the can be

found at Appendix B & C, respectively.

HFACS
Connection
svrID:string

loginID:string
password:string

selectServerName()
setServerName()

MSDE
dbName:string
loginID:string

password:string
connect()

disconnect()
restartMSDE()

success()
dropDB()

HFACS_Main
serverName:string

dbName:string
typeDB:string

Main()

Update_Controller

getUpdateFTP()
getUpdateDisk()

FTPUpdate
dbName:string
MDFFile:string

connect()
disconnect()

gotFileDoNext()
gotFileDoLast()

UpdateDisk

performDiskUpdate()
success()

connect to D
B

start server

update via disk

update
via
FTP

update D
B

Figure 3.7. Interim Class Diagram.

1. HFACS Connection Class

The HFACS Connection class encapsulates the functionality of the entire

component and provides the interface for all other classes. It is the only class with public

members accessible from outside of the component. Instantiating the HFACS

Connection class allows the calling program to connect to a SQL server by passing

connection arguments. Connection arguments can be input via logon dialog box or by

reading stored values from an initialization file (HFACS.ini). The connection process

logic is capable of starting the SQL server using SQLDMO objects encapsulated by the

MSDE class. Instances of this class also provide public methods for the calling program

to change the server in mid operation of the HFACS-ME system and for replacing the

HFACS database with updated versions via disk/FTP.

 46

HFACS_Connection
svrID:string

loginID:string
password:string

selectServerName()
setServerName()

Figure 3.8. Class Diagram for HFACS Connection.

2. HFACS_Main Class

This class is the “Main” class for the component. Visual Basic 6.0 requires a

Main class for all dynamic link library components function. For those familiar with

C++, it is similar to “Program Main ” – required for runtime execution. It is instantiated

any time the .dll is called (when the program starts running). In the context of our use, it

is also used to store global variables such as the SQL server name, database name, and

type of database.

HFACS_Main

serverName:string
dbName:string
typeDB:string

Main()

Figure 3.9. HFACS_Main Class Diagram.

3. UpdateController Class

The UpdateController class is the business logic class responsible for controlling

the FTPUpdate class and the UpdateDisk class. It facilitates the manipulation of forms

and other objects when replacing the database via FTP or the disk method.

Update_Controller

getUpdateFTP()
getUpdateDisk()

Figure 3.10. Class Diagram for UpdateController Class.

 47

4. UpdateDisk Class

UpdateDisk is responsible for performing an update of the HFACS database from

a disk/network share.

UpdateDisk

performDiskUpdate()
success()

Figure 3.11. Class Diagram for UpdateDisk Class.

5. FTPUpdate Class

This class is responsible for performing an update of the HFACS database via

FTP. Since a SQL Server database is comprised of two files (HFACS.mdf &

HFACS_log.ldf), it has methods that allow it to monitor download and installation of

each file, separately.

FTPUpdate

dbName:string
MDFFile:string

connect()
disconnect()

gotFileDoNext()
gotFileDoLast()

Figure 3.12. Class Diagram for FTPUpdate Class.

6. MSDE Class

The MSDE class performs all SQLDMO object manipulation. It is responsible for

starting the MSDE or SQL Server engine, ensuring that the HFACS database is installed,

and managing database updates. Additionally, it provides the functionality to attach and

detach the database files fed to it by the UpdateDisk and FTPUpdate classes.

 48

MSDE
dbName:string
loginID:string

password:string
connect()

disconnect()
restartMSDE()

success()
dropDB()

Figure 3.13. Class Diagram for MSDE Class.

E. IDENTIFICATION OF SDM STAGES

As discussed in the previous chapter, we utilized the Spiral Development Method

(SDM) as a guide to control risk throughout the component development process. Before

beginning coding of the HFACS DLL component we had to choose which version of

SQL Server to develop our application with. At the time of this writing, Microsoft SQL

Server 2000 had only been commercially available for approximately six months.

Microsoft SQL Server Version 7.0 was definitely the more mature database engine with

plenty of available documentation and support on the Internet. Both versions offered

support for running as a desktop engine dedicated to a single instance of HFACS, as a

single server supporting large numbers of clients, or as part of a cluster of servers

supporting entire enterprises. Both versions also offered support for multiple processors,

discretionary security, transactions, and triggers. Based on our Microsoft's prior tendency

to make new programs backward compatible, we chose SQL 7.0 and MSDE 1.0 as our

development version of the engine. We felt that migration of the code to include SQL

2000 functionality might be difficult, so we planned to do it as part of a separate stage.

Based on this decision we identified the following three stages of cyclical development:

• Stage 1 - Creation of an HFACS Connection component compatible with
the SQL Server 7.0 engine.

• Stage 2 - Modification of the component to make it compatible with both
the SQL Server 7.0 and 2000 engines.

• Stage 3 - Creation of installation programs to install and configure the
component and all related files on Windows 95 or newer platforms.

 49

F. IMPLEMENTATION - STAGE 1

Since the HFACS Connection component is a stand-alone compiled ActiveX

dynamic link library, it was developed using the Microsoft Visual Basic 6.0 Integrated

Development Environment (IDE) program. Microsoft Access has it's own native

development IDE and cannot use the true VB 6.0 IDE. We knew that switching back

and forth between the two IDEs and trying to find faults would be difficult. Our strategy

for avoiding this was to create the classes of the component and a separate "test" program

to validate class behavior all within the VB IDE environment. Visual Basic provides

support for this in the form of a "Visual Basic Group" (.vbg) project. This plan worked

well. Using the .vbg we could place two separate projects in the same workspace

allowing them to run in the IDE at the same time. By initially testing class behavior

within the VB IDE instead of from the external Access environment, we were able to

isolate problems to their sources much more quickly -- without all the IDE switching. In

addition, when the time came to test the component with Access, since we knew it

worked in VB, we immediately knew the problem was either on the Access side, or in the

interface.

The first challenge we faced in our coding was the inability of Visual Basic 6.0 to

provide true inheritance. We were aware that Visual basic only provided "has a" or

compositional inheritance, but our initial coding efforts proved this limitation difficult to

adapt to. Luckily, Visual Basic does provide support for secondary interfaces to classes

using the Implements keyword. We attempted to use base classes and interfaces

wherever possible to make up for the lack of true inheritance. This provided many

benefits, most notable was the ability to fix a bug in a base class and have all the derived

classes "inherit" the change through the interface -- without having to edit code in the

other classes. We only had to modify code in derived classes when we changed the

interface of the base class, added new properties and methods, or deleted existing ones.

The first truly unforeseen difficulty we came across was the inability of Visual

Basic to define a constructor with parameters. In more mature object oriented

programming languages, a constructor can be defined in the class module and executed

whenever a new instance is created. Because you define the syntax of the constructor

 50

method, you can force the client code to pass arguments that are needed to create the

object, or return an error if the required information is not provided. In fact, several

constructors can be defined which take different parameters. In VB, there are no

constructors. Instead, there is a class initialize event which can be programmed to ensure

all objects start in consistent state. The problem is that the class initialize event cannot be

overridden and it cannot take arguments. This is a serious shortcoming in VB that will be

corrected in VB.NET. To work around this, we used pseudo-constructor methods

wherever possible. To create a pseudo-constructor, a public function was defined in a

globally accessible module (the HFACS_Main class). These functions were given names

like "New_MSDE " with function prototypes including optional parameter lists. Optional

parameter lists have to be used because functions cannot be overridden. When these

functions are called, they perform two operations: 1) creation of an instance of the class

and 2) execution of a Friend "init" function from the class which takes matching optional

parameters. If this sounds confusing, it is. Let me give a specific example. Consider the

following code excerpt from the MSDE class:

**
Psuedo Constructor for the MSDE Class

**

This public function is placed in a globally accessible module. Notice that it takes

10 optional arguments.

Public Function New_MSDE(Optional sUser As String, _
 Optional sPassword As String, _
 Optional sSvrName As String, _
 Optional sMDFName As String, _
 Optional sDBName As String, _
 Optional sInstDirectory As String, _
 Optional sAutomaticLogon As String, _
 Optional sFirstRunCheck As String, _
 Optional sNTAuth As String, _
 Optional sTypeDB As String)

 51

The first operation performed is the creation of an instance of the MSDE class.

This invokes the class_Initialize event of the MSDE class, which can take no arguments

as parameters. In order for this to work, the oMSDE object variable must be declared

prior to calling the function. In this case, it was declared as a reusable package (DLL)

level variable.

 Set oMSDE = New MSDE

Next, the optional arguments are verified. If they are missing, then predefined

values stored in a .DLL level instance global variable are used. This ensures all instances

of the object are created in consistent state.

 If IsMissing(sUser) Then sUser = gStrUID
 If IsMissing(sPassword) Then sPassword = ""
 If IsMissing(sSvrName) Then sSvrName = gStrServerName
 If IsMissing(sMDFName) Then sMDFName = gStrDatabaseFileName
 If IsMissing(sDBName) Then sDBName = gStrDatabaseName
 If IsMissing(sInstDirectory) Then sInstDirectory = gStrAppPath
 If IsMissing(sAutomaticLogon) Then sAutomaticLogon = gStrAutoLogon
 If IsMissing(sFirstRunCheck) Then sFirstRunCheck = gStrFirstRun
 If IsMissing(sNTAuth) Then sNTAuth = gStrNTauth
 If IsMissing(sTypeDB) Then sTypeDB = gStrTypeDB

Next, since member functions can have parameters, the Friend function member

of the MSDE class instance just created is called and the parameters are passed to it.

 oMSDE.Init sUser, _
 sPassword, _
 sSvrName, _
 sMDFName, _
 sDBName, _
 sInstDirectory, _
 sAutomaticLogon, _
 sFirstRunCheck, _
 sNTAuth, _
 sTypeDB

End Function

 52

Now lets look at the pertinent functions in the MSDE class.

**

MSDE Class Code Extract
**

This code defines the Class_Initialize event, which is really a default no-argument

constructor. It basically populates the module level variables.

Private Sub Class_Initialize()

 sUser = gStrUID
 sPassword = gStrPWD
 sSvrName = gStrServerName
 sMDFName = gStrDatabaseFileName
 sDBName = gStrDatabaseName
 sInstDirectory = gStrAppPath
 sAutomaticLogon = gStrAutoLogon
 sFirstRunCheck = gStrFirstRun
 sNTAuth = gStrNTauth
 sTypeDB = gStrTypeDB

End Sub

Here we see the custom "Init" function called by the psuedo-constructor that

results in the mimicked behavior of a constructor that takes arguments.

Friend Sub Init(sPassedInUser As String, _
 sPassedInPassword As String, _
 sPassedInSvrName As String, _
 sPassedInMDFName As String, _
 sPassedInDBName As String, _
 sPassedInInstDirectory As String, _
 sPassedInAutomaticLogon As String, _
 sPassedInFirstRunCheck As String, _
 sPassedInFirstRunAfterUpdate As String, _
 sPassedInTypeDB As String)

 sUser = sPassedInUser
 sPassword = sPassedInPassword
 sSvrName = sPassedInSvrName
 sMDFName = sPassedInMDFName

 53

 sDBName = sPassedInDBName
 sInstDirectory = sPassedInInstDirectory
 sAutomaticLogon = sPassedInAutomaticLogon
 sFirstRunCheck = sPassedInFirstRunCheck
 sNTAuth = sPassedInFirstRunAfterUpdate
 sTypeDB = sPassedInTypeDB

End Sub

This psuedo-constructor mechanism worked well in the pure visual basic

environment, however, when we compiled the DLL and tried to create an

HFACSConnection object using the psuedo-constructors in the global modules of the

package from Microsoft Access -- it didn't work. As it turns out, global modules of a

compiled DLL only have package level scope. So, they are not visible from Access

because Access is external to the package. This was not a showstopper, but it reduced the

effectiveness of the psuedo-constructor method and caused heavier reliance upon global

variables.

The next unforeseen problem we encountered in our implementation was VB's

lack of support for free threading. In free threading, each thread can access the entire

process's data area and all threads share the applications global variables. In the future,

Visual Basic .NET will provide free threading. The main problem with free threading is

that you have to keep track of all the shared resources, including variables. You can very

easily end up with a deadlock situation. Visual Basic 6.0 tries to provide an easier

method for dealing with multiple threads through the use of "apartment" threading.

Apartment threading, however, only provides different threads for instances of entire

components. For example, three different users could access the HFACS component

from different computers and each would receive their own instance of the objects in the

DLL. These instances of the DLL would each have their own thread and reside in their

own "apartment." Each apartment has its own set of variables and code from one

apartment can't access that of another apartment. This effectively eliminates the

scheduling problems associated with shared global variables that are very problematic in

more other programming languages. The problem with this approach is that you can't

 54

directly launch a new thread from within your apartment. Here are the specifics of our

problem.

As part of the HFACS connection component's functionality, it needed to be able

to connect to an external FTP server and download replacement copies of the HFACS

database files. The FTP class we used to provide this capability wraps the functionality

of the WININET.DLL file that is part of all Windows platforms. The WININET.DLL

provides API hooks to the operating system for Internet connectivity. This solution

worked well with one exception. When the user downloaded a file, the HFACS program

became blocked waiting for the getFile method of the cFTP class to successfully

download the database update. As a result, no screen updates could occur within

HFACS. If the user launched an instance of another program while the FTP was

downloading, and then minimized the application to view the status of the download, the

HFACS screen would not redraw. The user was left with a screen full of white unpainted

controls -- it was impossible to determine if the FTP was still in progress or if the

computer had locked-up and become unresponsive. To work around this problem

required a rather complex implementation implementing a "callback" technique.

The callback mechanism works like this: the client application calls a method

from an external component compiled as an executable that will take a relatively long

time to execute, it passes a reference to an object defined in the client application and the

external component stores this reference in local variable. This variable is then used to

call back to the client to inform it that something has occurred. Since the external

component is an ActiveX executable file, it runs in its own process space. To make use

of this functionality, the cFTP class was removed from the HFACs Connection

component and an interface class was designed for it. These two classes were then

compiled as a separate executable FTP server. A reference to the compiled file was

included in the HFACS Connection component and a callback class was created using the

"Implements" keyword. Figure 3.14 illustrates a high- level overview of the concept.

 55

Connection
Functions

FTP Update Form

Callback Interface
Implementation

HFACS.dll

FTP
Server

FTP Class

Callback Base Class

HFACSFTP.exe

1. HFACS Connection
component instantiates
FTP instance of FTP
Server running in its own
process.

2. When FTP download is
complete, Server “calls-
back” the Connection
component through it’s
implementation of the
callback base class
interface.

Connection
Functions

FTP Update Form

Callback Interface
Implementation

HFACS.dll

Connection
Functions

FTP Update Form

Callback Interface
Implementation

HFACS.dll

FTP
Server

FTP Class

Callback Base Class

HFACSFTP.exe

FTP
Server

FTP Class

Callback Base Class

HFACSFTP.exe

1. HFACS Connection
component instantiates
FTP instance of FTP
Server running in its own
process.

2. When FTP download is
complete, Server “calls-
back” the Connection
component through it’s
implementation of the
callback base class
interface.

Figure 3.14. OLE DB Architecture.

The callback function worked well for us. Since the FTP file download was now

running in its own process space, the screen in the HFACS component was free to

redraw. This implementation also resulted in better performance of the cancel button on

the FTP form, which became much more responsive to user interaction.

G. IMPLEMENTATION - STAGE 2

After several weeks of enhancements and code revisions, the component appeared

to be working well enough for us to begin contemplating modifications to enable it to

work with the SQL Server 2000 engine. This marked the beginning of stage 2. As

briefly mentioned in chapter II, our literature review indicated that both versions are

supposed to be forward compatible -- that is, a SQL 7.0 database file can be read by SQL

2000 [Ref. 20] and that the existing SQLDMO model is compatible with a SQL Server

2000 database, less the new features of SQL Server 2000 [Ref. 21].

Our first step was to install SQL Server 2000 Standard Edition on our

development computer and test our existing code with it. SQL Server 2000 installed a

 56

new version of SQLDMO, made some changes to file locations, and offered several new

options for dealing with new support for server "instances", but otherwise the SQL Server

2000 installation was very similar to that of SQL Server 7.0. Using our Visual Basic test

program we successfully used our existing HFACS Connection component to start the

server, detach a database file, and stop the server. The first problem we encountered was

with attaching a database file. As it turned out, the new version of SQLDMO required

use of brackets ("[" and "]") to separate arguments in its attachDB method. The old

version of SQLDMO would accept either spaces or brackets. This was a simple fix.

The next problem proved more difficult to solve. The doConnect method of our

HFACSConnection class provides the functionality to create and test a connection to a

new server. The doConnect method created an instance of the frmODBLogon class,

which in turn used SQLDMO to verify the connection information specified by the user

in the logon dialog box. This was accomplished by: 1) attempting to start and connect to

the server; and 2) looping through database objects on the server to confirm existence of

the HFACS database. For some reason, the SQL 2000 version of SQLDMO will not

allow starting of a remote server. This proved troublesome, as the ability not just to

connect to a remote instance of the database, but also to start it, was a desirable feature.

An exhaustive search of the Internet and newsgroups failed to yield any valuable

information related to this problem. As best as we could discern, this problem is related

to the added features associated with the ability of SQL Server 2000 to create multiple

separate "instances" of SQL servers on the same machine. These instances listen for

clients on different ports. In SQL Server 7.0, port 1433 was used for all network traffic,

unless specifically changed to another port by a database administrator. Apparently, the

new version of SQLDMO doesn't know which port to use and does not use the default of

1433. As a workaround, we modified the MSDE and frmODBLogon classes in our

component to use ADO instead of SQLDMO for verifying remote connections.

Although this workaround does provide the functionality to validate a user's logon

information, the capability to actually start a remote SQL server was lost.

 57

Now that we had modified our component to work with both versions of the SQL

engine from a pure Visual Basic environment, we were ready to compile and test it using

Access as a front-end. In our premier test, we encountered a host of errors, including:

• All existing stored procedure names were displayed with ";1" at the end.

• None of the stored procedures could be run without receiving an error
stating that the stored procedure could not be found.

• If you tried to use the security management functions of Access to add
logons and users to SQL Server, an error message stating "components
failed to load or initialize" was displayed.

• You could not create or design tables, database diagrams, or stored
procedures without errors.

Since our component worked perfectly in the pure Visual Basic environment, we

quickly concluded that there were significant compatibility problems between Access

2000 and the new SQL Server 2000 engine. Luckily, an Internet query identified that

Microsoft had already acknowledged these problems and addressed them through two

fixes. The first fix was Office 2000 Service Release 1/1a. This service release seemed to

fix all the problems except for the ability to create or design tables, database diagrams, or

stored procedures without errors [Ref. 22]. These remaining incompatibilities were fixed

by the second patch called the Access 2000 and SQL Server 2000 Readiness Update [Ref.

23].

In the end, we were able to modify the component and install these two patches to

get everything working in the SQL 2000 environment. The requirement for installation

of the two patches is extremely unfortunate as it complicates system requirement

validation for users. Aggravating matters, the SR-1/1A update for Office cannot be

bundled with the HFACS distribution due to Copyright. In addition, the Access/SQL

Update does not have a user friendly installation program. It requires users to manually

unpack and copy files to program directories, making it clumsy and much less

professional in terms of ease of use. Nonetheless, the patches do provide the

functionality that Microsoft proclaims and the HFACS Connection component will work

in a SQL 2K environment if they are both properly installed.

 58

H. IMPLEMENTATION - STAGE 3

At the end of stage 2, the HFACS Connection component had been tested on

several platforms with both SQL Server engines as back-end data sources. We were

confident that it was ready to be bundled into an installable set of programs capable of

deployment on any computer running a Windows 95 or newer Microsoft operating

system. This bundle of programs would need to install our component, the FTP server,

the initialization file, either the SQL 7.0 or 2000 engine, the Access project file, and all

the associated library reference files. In addition, we desired to bundle Microsoft Access

Runtime as part of the package. Microsoft Access Runtime is a stripped-down version of

Access 2000 that allows developers to distribute Access based solutions to users without

the requirement for Access to already be installed on the user's machine. Access Runtime

is only available as part of the Microsoft Office Developer version of Office 2000. We

realized that three setup programs would be needed: one for our component and its

associated files, one for the SQL 7.0 engine, and one for the SQL 2000 engine.

We began by creating a setup program for our HFACS component and related

files. The first step was to identify libraries and files that needed to be included with our

compiled code in order for it to run. Since we had tracked program dependencies as part

of development, this was relatively easy. Next, we needed to determine where on the

users machine to install the files in order for HFACS to find them at runtime. The

following matrix identifies the files and locations, less those associated with installation

of either of the two SQL engines:

Filename Function Client Directory Location

comdlg32.ocx Provides objects needed to use the file open/close dialog. Application path
gif89.dll Provides objects for displaying animated .gif files Application path
HFACS.adp The HFACS Access client project. Application path
HFACS.bmp Splash screen. Application path
HFACS.dll The HFACS Connection component. Application path
HFACS.ico HFACS program icon. Application path
HFACS.ini HFACS initialization file. Application path
HFACS.mdf Initial distribution of the HFACS database. Application path
HFACS.mdf.old Back-up copy of the database. Application path
HFACS_log.ldf Initial distribution of the database log file. Application path
HFACS_log.ldf.old Back-up copy of the log file. Application path
HFACSFTP.exe The FTP server. Application path
MSCOMCT2.ocx Provides objects for common controls like the status meter. Application path
MSCOMCTL.ocx Provides objects for common controls like buttons and text boxes. Application path

Figure 3.15. File Install Locations.

 59

The Visual Basic Enterprise Edition includes a Package & Deployment Wizard

for creating Setup programs for compiled applications. Microsoft Office Developer

includes a similar Package & Deployment Wizard for creating Setup programs for custom

Access solutions. Both versions of the Wizard allow specification of file install locations

in much the same format as the table of Figure 3.15. The Developer version has the

added ability to bundle Access runtime -- which is the only way runtime can be

distributed. This is effectively a measure to prevent non-owners of the Developer edition

of Office from copying the runtime files and including them in their distributions. For

this reason, we used the Developer edition of the Package & Deployment Wizard for

creating our Visual Basic based setup programs.

The source code for the Setup program used by the Package & Deployment

Wizard is included with both VB Enterprise and Developer. Creation of our setup

package would require modification of the Developer version code in two ways. First, a

capability needed to be added to write changes to the hfacs.ini initialization file as part of

the program install. This was needed so that the HFACS Connection component could

determine the application path of the Access project without reliance on the Access

project to pass this information. This was a trivial matter, as all we were required to do

was add the INIFile class to the Setup program project with some simple code to write

the application path to a key as part of setup. The second modification was also trivial.

In order to include a custom icon as part of the distribution, a few lines of code had to be

added to the Setup program source code as defined in Lynn Shanklin and Brady Deal's

article, "Distributing Custom Icons with Your Microsoft Office 2000 Applications" [Ref.

24].

Our modified setup program compiled perfectly using the Office Developer

Package & Deployment Wizard. Installing it on several machines, however, we found

several inconsistencies associated with the different Windows operating systems. All the

previous problems identified with the SQL 2000 engine were present, as was a new bug

dealing with "Multiple System Files Out of Date" (see Microsoft Knowledge Base article

Q279764). The good news was that every deficiency we discovered was corrected if

Office Service Release 1/1a and the Access 2000 and SQL Server 2000 Readiness Update

 60

were installed on the machine in the proper sequence. These findings highlighted the

importance of stressing application of these patches to Microsoft products in our final

user documentation.

The next step dealt with creating setup files for both versions of the SQL engine.

The SQL Server 2000 Desktop Engine setup program provided by Microsoft was

designed for distribution as part of a bundle. Microsoft has conveniently packaged the

required files in a directory with a customizable initialization file for setting application

specific options. The program installs with a single screen, displaying a graphical status

bar that indicates progress. All we had to do was add parameters to the initialization file

forcing the engine to install itself using mixed mode security settings. This ensures that

when the engine is installed on a computer running a Windows 2000 operating system,

the HFACS Connection component will still be able to access the engine using the

default "sa" logon with a blank password. Of course the user can change these settings

using the osql.exe command line management tool or by upgrading to a "full" version of

Microsoft SQL server after installation.

Creating an installation setup program for the SQL 7.0 desktop engine was much

more complex. The setup program provided by Microsoft for the SQL Server 7.0 engine

is a full- fledged GUI program with multiple screens requiring the user to enter detailed

information about SQL security settings, ODBC data sources, and other information that

really requires a background in SQL server administration to understand. We hypothesize

that a user installing the desktop engine will generally be someone interested running a

standalone version of the HFACS-ME program, so we wanted MSDE to install

automatically. The solution to this problem was to create an unattended installation file,

which recorded all the "answers" to the wizard dialogs. In this manner, the setup

program could be launched from an MSDOS batch file specifying command line options

to run with the settings specified in the unattended installation file. This, however,

presented another problem. The DOS window remained open for the approximately

eight minutes it took to install MSDE without providing any feedback to the user -- just a

black screen and lots of disk activity. We wanted to create a GUI status bar screen

similar to one used by the SQL Server 2000 engine. In keeping with the desire to keep all

 61

our code in Visual Basic, we pondered several possible implementation scenarios, all of

which were deemed undesirable due to the lack of free threading in VB. Since the

program would be very small, we opted for a Visual C++ implementation.

I. SUMMARY

In the end, we were able to create code that would support both versions of the

SQL engine, but maintenance of two separate installation programs was undesirable. In

addition, the SQL 7.0 and SQL 2000 engines utilize different versions of the SQLDMO

model and the related files are located in different default directories. This meant that we

would have to develop two different versions of our Access client to accommodate the

different reference file locations. Alternatively, we could programmatically manipulate

the registry to determine the locations of these SQLDMO files. These two issues made

support for both versions of the SQL server engine more trouble than it was worth. Since

we knew we could distribute the SQL Server 2000 engine with our application, we

decided to drop support for the older engine. The only drawback of the decision is that

users of full SQL Server 7.0 will have to upgrade to full SQL 2000 in order to support

more than five simultaneous users.

Completion of the HFACS Connection component and the required program

setup files laid the foundation for the business- logic component development effort.

With the questions surrounding SQL Engine version problems, Visual Basic limitations,

Access compatibility issues, and operating system differences all answered, we were free

to focus on issues only related to the business- logic component. Specifically, the

database schema, placement of the components in some type of architecture, object-

oriented design, and efficient data-access methods.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

IV. HFACS BUSINESS COMPONENT DEVELOPMENT

A. OVERVIEW

This chapter provides a detailed description of the design and implementation of

the HFACS business logic component. We began its development with determination of

overall system architecture via a great deal of research and experimentation in the area of

COM components. Once this architecture decision had been made, we refined our

conceptual model through interaction diagrams using the UML, prepared class diagrams,

and identified stages of spiral development for the rest of our work. Great emphasis was

placed on the design of database schema and relationships. In the end, the logic for this

component was implemented within classes and Visual Basic for Applications modules,

and then encapsulated in an Access 2000 project file. The culmination of this phase was

a fully functioning beta of the new HFACS system -- ready for a thorough usability study

by an independent testing group.

B. ARCHITECTURE

Our first concern in developing the business logic component for the new HFACS

system was to determine the architecture in which we would use it. The architecture

decision was extremely important, as it would dictate many aspects of our work. The

ease of design, opportunity for code reuse, class design considerations, and scalability

would all be directly affected by this decision. We began with an investigation of the

pros and cons of each method.

A two-tier solution consists of one or more client applications connecting directly

to the SQL Server. In this arrangement, the client sends requests directly to the server

and the server handles the request by passing information directly back to the client.

Client-server workload is manipulated through use of stored procedures and/or client-side

SQL text requests. The system can be designed so that the client does most of the labor

(called a "fat client" system) or so that the server handles the bulk of the work (called "fat

server"). For example, a client could request a copy of an entire table from the server and

then when the server provides it in the form of a recordset object, it could sort and

manipulate the data in any way required. This type of operation places the vast majority

 64

of the work on the client computer, which is good in terms of server side performance,

but is poor with regard to the amount of network traffic it produces. Response times

associated with network bandwidth can make this type of operation seem painfully slow.

Alternatively, SQL Server stored procedures can be used to ask the server to perform

various querying operations on behalf of the client and then pass back only the desired

information. For example, instead of asking the server to send back an entire table's data,

a stored procedure could be used to get data pertaining to just one record. Use of stored

procedures in this manner reduces network traffic, but places more burden on the server.

An additional concern in the two-tier model is the number of connections needed

between client and server. Every client needs at least one connection.

A three-tier or n-tier architecture, on the other hand, is comprised of three or more

layers of services. The client and the server are still present and make up two of the

layers, but a third layer of architecture exists for the purpose of managing connections

and requests between the client(s) and server(s). In general, these middle tiers

encapsulate the business logic of an application. Middle tiers are exceptionally well

suited for handling requests of multiple servers. This is an important scalability concern.

It is very common for departments/organizations to grow and desire to create applications

which require simultaneous access to more than one database. Two-tiered solutions

would require every client to have a user ID and password for every one of these

connections. In a three-tier architecture, however, instead of every client making a

separate connection to multiple databases, the middle tier can be designed so that the

clients connect to it. Then the middle tier connects to the databases -- with only one

connection. Client computers act as if they are connecting to only one server, but via the

middle tier, they can connect to multiple servers.

Further complicating the architecture decision was our desire to use purely object-

oriented methods of programming. One of our research questions was to determine how

the linguistic discontinuity associated with relational databases could be overcome.

System architecture is directly related to the answer of this question. This is a very

complicated topic. In a two-tier solution, many would argue that a true object oriented

design cannot be implemented. Two tier solutions rely upon stored procedures, SQL

 65

syntax, triggers, and views to manipulate data. Each of these presents its own set of

limitations on data, which combine to form a somewhat constraining environment. In

order to completely overcome the limitations of relational database schema and the

aforementioned methods to manipulate them, we believe that no stored procedures or

other database server functions should be used. To accomplish this in Visual Basic, the

client would be required to directly access tables and programmatically perform all data

manipulation. Classes would be developed for each table and each instance of a class

would require its own connection to the database. Additionally, in a two-tier object

oriented design, these class objects would need complete copies of all table data,

resulting in an enormous network burden.

Alternatively, a three-tier object oriented solution could be implemented to

eliminate the network traffic problem. The middle tier could be placed on the same

machine or local subnet as the SQL server. This however, would still not resolve the

problem associated with each instance of an object creating it's own connection to the

SQL Server. To eliminate this problem, two methods are possible: 1) creating a 4th tier

to act as a layer of abstraction for the class instances to interface with the server; 2)

utilizing a transaction processing monitor capable of sharing connections. Yet, each of

these options presents still another set of unique problems. The 4-tier option would

require a huge amount of programming in an area that we have no experience.

Additionally, installation programs for the components of these tiers would need to be

developed. These installation programs would need the capability to install the

components on stand-alone clients running MSDE, as well as, true SQL Servers -- a very,

very complex task. The transaction processing monitor option faces similar installation

issues. Microsoft Transaction Server (MTS) is the Microsoft processing monitor

compatible with SQL Server 2000 and Visual Basic. Developing a COM component for

(MTS) would require programmatically configuring it for use with MSDE and SQL

Server -- another daunting task.

Clearly a three-tier solution would offer more flexibility in the long run, but our

research led us to believe that the programming overhead associated with time and

complexity made this avenue prohibitive. Nonetheless, in order to further investigate

 66

how complex this endeavor would really be, and to get a feeling for the benefits it might

provide, we developed two prototypes for testing. The first prototype was a three-tier

implementation of a COM component for use with MTS. It was designed using Visual

Basic 6.0 as an Active-X DLL. An Access data project (.adp) was used as a front-end for

the component. The two-tier prototype was created using Access 2000 & VBA with a

direct connection to SQL Server. We experimented with the design for six weeks, testing

various functionalities as compared to a two-tier solution using a mix of server-side

stored procedures and client-side SQL requests. In the end, our predictions were

confirmed. The three-tier COM component was much more complex to create and

manipulate than the two-tier solution. We were able to successfully use it with MTS on a

true SQL Server installation, but we were not able to get it to work with MSDE. This is

not to imply that it cannot be done with MSDE, only that we could not do it in the time

available. These reasons, coupled with the fact that modifications could be made later in

the life cycle of HFACS to migrate it into a three-tier solution, led us to the selection of a

two-tiered architecture. This decision was not made without careful thought and testing.

As will be described in the remainder of this chapter, great lengths were taken in the

implementation of our two-tier solution to maximize its ability to be migrated to COM at

some point in the future and to optimize it for server-side (fat-server) data manipulation.

C. SEQUENCE DIAGRAMS

With the decision to implement a two-tier solution behind us, we were ready to

refine the conceptual model for the component in a fashion similar to that used for the

connection component. This involved creation of the Sequence diagrams for the typical

course of events for our critical use cases. The sequence diagrams that follow illustrate

the actor interactions and the operations initiated by them, as well as, their order.

 67

1. Add Factors

:Operator :HFACS-ME

Load_Form()

viewMishap()

displayMishap()

addFactor()

updateMishap()

The operator
selects the
third order
factor which
will
automatically
select the
2nd and 1st
order factors.

selectFactors()

Figure 4.1. Add Factor Sequence Diagram.

 68

2. Add Mishap

:Operator :HFACS-ME

addMishap()

getParameters()

next()

getParameters()

finish()

Load_Form()

addMishap()

Form_Open()

Figure 4.2. Add Mishap Sequence Diagram.

 69

3. Graph

:Operator :HFACS-ME

graph Form_Load()

graph()

openForm(progress_bar)

openForm(actual_graph)

close(progress_bar)

close()

formClose()

Figure 4.3. Graph Sequence Diagram.

4. Edit a Mishap

:Operator :HFACS-ME

formLoad()

viewMishap()

displayMishaps()

save()

Form_Dirty()

Form_Close()

Figure 4.4. Edit a Mishap Sequence Diagram.

 70

5. Edit a Factor

:Operator :HFACS-ME

Form_Load()

viewMishap()

save()

Form_Dirty()

Form_Close()

displayMishap()

Figure 4.5. Edit a Factor Sequence Diagram.

 71

6. Get Summary Report

:Operator HFACS-ME

Form_Load()

summary()

Form_Open()

populateComboBoxWithAll()

update()

getUpdate()

goGetRecords()

lblDoublclick()

close()

Form_Close()

Figure 4.6. Summary Report Sequence Diagram.

7. Create a Report

:Operator HFACS-ME

Form_Load()

Form_Open()

clickTypeReport()
Form_Open(waitProgressBar)

Form_Close()

close()

Form_Close(waitProgressBar)

Figure 4.7. Create a Report Sequence Diagram.

 72

8. Query

Our requirements specified the ability to query by a single field and by multiple

fields. We prepared our use cases to reflect this. During sequence diagram development,

we decided to combine these into a single use case by providing the ability to do both

operations from the same place.

:Operator :HFACS-ME

Form_Load()

ExpertQuery()

Form_Open()

view()

Form_Open(viewMishaps)

done()

Form_Close()

Figure 4.8. Query Sequence Diagram.

D. COLLABORATION DIAGRAMS

Analysis of our Sequence diagrams allowed us to create Collaboration diagrams

to illustrate allocation of responsibilities to objects in the system, specifically

demonstrating how they interact via messages. The diagrams that follow provided the

level of detail needed isolate the key messaging functions between objects in the

component.

 73

1. Add Factors

operator SelectMishap

1: Form_Load()

Factors

2: viewMishap()

EditMishap

3: Form_Open()4: addFactor()

5: selectFactor()

6: updateMishap()

Figure 4.9. Add Factors Collaboration Diagram.

2. Add Mishaps

operator selectMishap

1: addMishap()

AddMishap

2: Form_Open()
3: getParameters()

4: next()

5: getParameters()

6: finish()

7: updateDatabase()

EditMishap

8: Form_Open()

Opens the
EditMish...

Figure 4.10. Add Mishaps Collaboration Diagram.

 74

3. Graph

operator graph waitProgressBar

3: Form_Open()

actualGraph

4: Form_Open()

5: Form_Close()

1: Form_Load()
2: graph(x,y)

6: update()
7: close()

8: Form_Close()

Figure 4.11. Graph Collaboration Diagram.

4. Edit a Mishap

operator selectMishap

1: Form_Load()
2: viewMishap()

EditMishap

3: Form_Open()

4: save()

5: Form_Dirty()6: Form_Close()

Figure 4.12. Edit a Mishap Collaboration Diagram.

5. Edit a Factor

operator selectMishap

EditMishap

1: Form_Load()
2: viewMishap()

3: Form_Open()

4: save()

5: Form_Dirty()
6: Form_Close()

Figure 4.13. Edit a Factor Collaboration Diagram.

 75

6. Get Summary Report

operator QueryMenu

Summary

WaitProgressBar

6: populateComboBoxWithAll()
8: getUpdate()

9: goGetRecords()

ViewMishap

1: Form_Load()
2: summary()

7: update()
10: lblDblClick()

12: close()

13: Form_Close()
3: Form_Open()

4: Form_Open()
5: Form_Close()

11: Form_Open()

Figure 4.14. Get Summary Report Collaboration Diagram.

7. Create a Report

operator Reports

1: Form_Load()

2: Form_Open()

3: clickTypeReport()

waitProgressBar

4: Form_Open()

5: Form_Close()

6: close()

7: Form_Close()

Figure 4.15. Create a Report Collaboration Diagram.

 76

8. Query

operator QueryMenu

1: Form_Load()
2: ExpertQuery()

ExpertQuery

3: Form_Open()
4: view()

ViewMishaps

5: Form_Open()

6: done()

7: Form_Close()

Figure 4.16. Query Collaboration Diagram.

E. CLASS DIAGRAMS

Finally, the information gleaned from the Collaboration diagrams, empowered us

with the knowledge needed to refine our conceptual model. Figure 4.17 illustrates an

intermediate level view of the key classes.

 77

MainMenu <<Form>>
Form_Load()
AddEditMishaps _Click()
Exit_Click()
Graph_Click()
Investigate_Click()
Query_Click()
Report_Click()

frmSelectMishap
cmdDone _Click()
cmdViewMishap _Click()
cmdAdd _Click()
cmdKill _Click()
Form_Open()

<<Form>>
frmEditMishap

Cancel ()
CodeMaintenance ()
Save ()
Form_Close()
Form_Dirty()

<<Form>>

Form_Open()
Preview()

FrmAddMishap <<Form>>
cmdBack_Click()
cmdNext _Click()
cmdFinish _Click()
cmdCodeMaintenance _Click()
Form_Close() Form_Open()
addFactor ()
cmdCancel _Click()
addMishap ()
Form_Load() select m

ishap

add M
ishap

edit mishap

ConnectionFunctions <<Class Module>>

CreateConnection ()
InitConnection () changeServer ()
getUpdateFTP ()
getUpdateFromDisk ()
removeConnection ()
toggleDBType ()

connect

ActualGraph <<Form>>
cmdUpdate _Click()
Form_Close()
Form_Load()
Form_Open()
togEnlarge _ AfterUpdate ()
chtTheGraph _ PointSelected ()

ExpertGraph <<Form>>

cmdGraph _Click()
Form_Close()
Form_Load()

get graph

draw
 graph

Summary <<Form>>
cbo *_Change()
cmdUpdate _Click()
Form_Close()
Form_Load()
*_ DblClick ()

get summary

ViewMishaps <<Form>>

cmdPreview _Click()
Form_Close()
Form_Load()

show
 m

ishap

ExpertQuery <<Form>>

Form_Close()
Form_Load()
cmdView _Click()

view mishap

get query m
enu

query
Report <<Form>>

Form_Close()
selectTypeOfReport ()
Form_Load()

get report

add factors

QueryMenu <<Form>>
Form_Close()
Form_Load()

cmdExpertQuery _Click()
cmdSummary _Click()

Figure 4.17. Intermediate Class Diagram.

The descriptions that follow provide abridged definitions and explanations for

these key classes. They are provided here to document their general functionality in

prose format and provide a basis for subsequent discussion of development issues.

Detailed HFACS Business component class diagrams illustrating all methods, as well as,

complete descriptions of the actual classes the can be found at Appendices D and E,

respectively.

 78

1. Main Menu Class

MainMenu
<<Form>>

Form_Load()
AddEditMishaps_Click()
Exit_Click()
Graph_Click()
Investigate_Click()
Query_Click()
Report_Click()

Figure 4.18. Main Menu Class Diagram.

This class is the main switchboard for the program. It is responsible for launching

all other processes. It is responsible to launch the add/edit mishap processes, graph

process, the investigation process, report process, and the query process. This class will

not perform any of these functions but act as a gateway to the other classes.

2. Connection Functions Class

ConnectionFunctions
<<Class Module>>

CreateConnection()

InitConnection()
changeServer()

getUpdateFTP()
getUpdateFromDisk()
removeConnection()
toggleDBType()

Figure 4.19. Connection Functions Class Diagram.

This class mainly performs the database maintenance and connection to the server

functions. It contains the vast majority of the "helper” functions used by the program. It

performs the functions for connecting and disconnecting the application to a SQL server,

replacing the database via FTP and disk file, and toggling database type from military to

civilian and vice versa.

 79

3. Select Mishap Class

frmSelectMishap

cmdDone_Click()
cmdViewMishap_Click()
cmdAdd_Click()
cmdKill_Click()
Form_Open()

<<Form>>

Figure 4.20. Class Diagram for Select Mishap Class.

This class serves the functions to support viewing the mishaps in the database and

acts as a gateway to the add mishaps class and edit mishaps class. This class also can

perform deletions of mishap records from the database.

4. Edit Mishap Class

frmEditMishap

Cancel ()
CodeMaintenance ()
Save ()
Form_Close()
Form_Dirty()

<<Form>>

Form_Open()
Preview()

Figure 4.21. Edit Mishap Class Diagram.

This class is used to edit mishaps and add factors. If any changes occur on the

existing records, the database is updated to reflect the changes.

5. Add Mishap Class

FrmAddMishap
<<Form>>

cmdBack_Click()
cmdNext _Click()
cmdFinish_Click()
cmdCodeMaintenance_Click()
Form_Close()
addFactor()
cmdCancel_Click()
addMishap()
Form_Load()

Figure 4.22. Add Mishap Class Diagram.

 80

This class, through series of questions, guides the operator in entering a new

record of mishap data into the database. This class will provide guidance and examples

when the operator seeks to input the mishap factors that pertain to the new mishap data.

Once the operator has inputted all required data, the class will update the database to

reflect the new record.

6. Expert Graph Class

ExpertGraph
<<Form>>

cmdGraph_Click()
Form_Close()

Form_Load()

Figure 4.23. Expert Graph Class Diagram.

This class is used to select the X and Y axis criteria and pass the users selections

to the Actual Graph class to display the graph.

7. Actual Graph Class

ActualGraph
<<Form>>

cmdUpdate_Click()

Form_Close()

Form_Load()

Form_Open()

togEnlarge_AfterUpdate()

chtTheGraph_PointSelected()

Figure 4.24. Actual Graph Class Diagram.

This class displays the graph with the user selected fields. Initially, graph

displayed is the result from the x and y axis values selected by the user in Expert Graph

class. Once the graph is displayed, the user can focus the graph into few items such as

aircraft type that was involved in the mishaps, or specific location of where the mishaps

occurred. The user can also to see the graph of all data (this is the initial view). The user

can also choose to enlarge the graph picture.

 81

8. Query Menu Class

QueryMenu
<<Form>>

Form_Close()

Form_Load()

cmdExpertQuery_Click()

cmdSummary_Click()

Figure 4.25. Query Menu Class Diagram.

This class acts as a gateway to the expert query class, which will perform query

on multiple fields, and the summary class.

9. Summary Class

Summary
<<Form>>

cbo*_Change()
cmdUpdate_Click()

Form_Close()

Form_Load()

*_DblClick()

Figure 4.26. Summary Class Diagram.

This class is used to depict the table of factor vs. mishap counts and percentages.

It allows the user to select criteria from combo boxes and fills then calculates the values

for the table when the user clicks update. When the user double clicks a label in the

table, View Mishaps class is launched which will display the mishaps that comprise the

data for the label in the summary data display.

 82

10. Expert Query Class

ExpertQuery
<<Form>>

Form_Close()
Form_Load()
cmdView_Click()

Figure 4.27. Expert Query Class Diagram.

This form allows the user to choose multiple criteria from a series of combo boxes

and then query the database to open the View Mishaps class and display the mishaps and

factors. When the user clicks "View", View Mishaps class is launched which will

displays the mishaps that matches the criteria established in the user selected combo

boxes.

11. View Mishaps Class

ViewMishaps
<<Form>>

cmdPreview_Click()

Form_Close()

Form_Load()

Figure 4.28. View Mishaps Class Diagram.

This class displays the mishap data responding from the Summary class and the

Expert Query class. The data displayed is not editable because it has read only

functionality.

12. Report Class

Report
<<Form>>

Form_Close()

selectTypeOfReport()

Form_Load()

Figure 4.29. Report Class Diagram.

 83

This class is the form for selecting the type of report to run. The class will display

the results that corresponds to the user’s parameter that was selected in a combo box. It

basically performs the functionality of sorting the data. For example, if the user selects

the report and the parameter selected is by year, then the data will be created in the report

and the data will be sorted by year.

F. IDENTIFICATION OF SDM STAGES

As discussed in Chapter 3, we utilized the Spiral Development Method (SDM) as

a guide to control risk throughout the component development process. During the

process of developing the class diagrams, several key issues arose which led us to our

choices for SDM design stages. Foremost of these issues was development of the

database schema. The old versions of HFACS (military and civilian) used different

schema that were not compatible in any way. In addition, we needed to coordinate with

other groups working on HFACS to develop an integrated solution that would meet

everyone's needs. We knew that in order to have data to work with while developing the

query and graphing classes, the ability to add, edit, and delete data would need to be done

first. Similarly, security concerns needed to be ironed out prior to coding the add, edit,

and delete classes. Based on these observations we identified the following five stages of

cyclical development:

• Stage 1 - Creation of Database Schema

• Stage 2 - Analysis of security

• Stage 3 - Creation of add, edit, and delete classes

• Stage 4 - Query, Graph, Reports

• Stage 5 - Test

G. IMPLEMENTATION - STAGE 1

One of the goals of our design was to overhaul the database schema in the old

military and civilian HFACS systems such that a common application interface could be

developed for both types of data. This would make maintenance of the application code

much easier because, in effect, both databases would actually be one database. At the

same time, however, other groups working on the project had their own design

considerations to contend with. We began the process by refining field names for data to

generic terms compatible with both versions. For example, instead of using fieldnames

 84

like "Service" for the military version and "Carrier" for commercial version, we decided

to use "Organization" -- which would apply to both types of data. Numerous changes of

this nature were made.

Our next step was to develop relationships to define the data. Structured Query

Language and relational databases are generally restrictive by nature. In any complex

project, developers face the limitations imposed by relationships every day. This is

generally a result of the normalization and other "structural rigidities" of relational data.

Because of these restrictions, we took great care when defining the structure of the

database tables.

Normalization consists of the standard rules of predicate calculus applied to

relationships to prevent a design that can cause repeated and inconsistent data. Poorly

designed relationships gives rise to complex SQL statements, with multiple joins,

necessary to re-mold the structure. We began by reviewing the following standard

definitions of 1st, 2nd, and 3rd normal forms and applying them to our proposed table

definitions [Ref. 30]:

• First Normal Form - Removes all repeating groups of data by giving each
logical group a separate table and providing a primary key in each.

• Second Normal Form - Key fields are chosen so that non-key fields
depend on all fields in the primary key.

• Third Normal Form - No fields depend on other non-key fields.

The products of our review consisted of tables for the entire database in 3rd

normal form. Figure 4.29 illustrates our tables in 3rd normal form. At this point, we

entered the data into Microsoft Access using a JET engine and conducted experiments to

determine how we could manipulate keys and relationships to provide the fastest

performance.

 85

Figure 4.30. HFACS Tables - 3rd Normal Form.

In general we decided to adopt third normal form for all tables with one exception

-- the "Factors" table. The "Factors" table consists of first, second, and third level factors,

which define the HFACS-ME taxonomy. In third normal form, each factor gets its own

table with its own primary key. In reality, however, the third, second, and first level

factor combinations are each uniquely defined by the third level factor. Since the

HFACS taxonomy is well defined, it is highly unlikely that many new factors will be

added. This creates a situation where the factors are referred to merely for "lookup"

purposes. For performance reasons, we decided to place all factors in single table.

Similarly, in defining relationships, we chose to enforce referential integrity for

cascading deletes only between the Mishaps and Factors tables. To accommodate both

types of database (civilian and military), we added a table for "Database Type" and

placed foreign key fields in the tables where differentiation of data would be necessary.

This made it possible to select the data for the appropriate database type with only a

single extra join per query. Our final agreed upon solution is illustrated in Figure 4.30.

 86

Figure 4.31. HFACS Tables - Final Solution.

Throughout our development, we created many very complex queries to display

data in various formats for graphing and advanced queries. Our conscious decision not to

blindly adopt third normal form did not appear to hinder us in any way.

H. IMPLEMENTATION - STAGE 2

Without a doubt, the security aspects of this project were the most difficult to

implement. To start with, we have the three modes of security used with SQL Server: 1)

NT authentication mode, 3) SQL Server mode, and 3) mixed mode. Compounding this

complexity were NTFS file and share permissions associated with Windows 2000 and

Windows NT, as well as, the complete lack of any intrinsic security in Windows

95/98/ME. Our requirements stated "access to the add/edit feature of the database must

be controlled via a password mechanism." Follow on discussions with our sponsors

 87

further refined this statement to mean that unauthorized users should not be able to add or

edit the official data in the database. Unauthorized users are further defined, as "anyone

not specifically identified by our sponsor as authorized to make changes." This creates a

fundamental problem. A SQL Server database file that is physically distributed to an

organization can be attached and modified by anyone with SQL Server administrative

privileges. This means that the only method to ensure unauthorized access is to maintain

a single copy of the database in one physically secured location. Users could then be

granted access using one of the modes of SQL Server security. Stated differently, the

only way to secure this type of database is not to physically distribute it.

Since this was not feasible due to the requirement for connectionless operation,

the next best alternative was to make it difficult to change the data. To accomplish this,

NTFS permissions and SQL Server permissions were not enough, as Windows 95/98/ME

users with a default installation of MSDE using the "sa" login and a blank password (the

system defaults) can change the data in the database. The solution was to create a third

level of security within HFACS -- its own security module. To do this, a data store of

user IDs and Passwords must be accessible during logon to validate the users as

administrators. There are several complex methods available for this type of

implementation. Our recommendation for future efforts would be to utilize a secure key

server. For our purposes, however, we chose to store the passwords in a hidden table in a

separate JET based Access file. This separate database can be password protected and the

password can be hard-coded into the compiled HFACS application to allow it access to

the data without giving users the ability to see the password. The obvious problem with

this is that if the password is compromised, there is no way to change it. A key server

would solve this dilemma, as it would provide a single point for password validation and

passwords could be changed if they were compromised. It would also, however, require

network access of some kind.

In the end, our security arrangement is good enough to keep people from

accidentally accessing the add/edit features of the database. A determined person with

malicious intent could gain access and change the data. As it stands, the most complex

security is provided by the Windows 2000 platform. In order for Windows 2000 users to

 88

access the administrative features of the database, they must be a Windows 2000 system

administrator, a SQL server administrator, and an HFACS administrator. All these

checks are programmatically verified by our business logic component every time a user

attempts to access the administrative features of the database. On Windows 95/98/ME

with a default installation of MSDE, however, there is only one security check -- for

HFACS administration privileges.

I. IMPLEMENTATION - STAGE 3

The first classes that we implemented in code were the add, edit, and delete

classes. This was the logical progression for our SDM as these functions needed to be

operable before we could build the query and graph classes. As described previously, the

add, edit, and delete classes posed special security problems. Adding to the complexity

was the requirement for users to initiate an "investigation" of a new mishap.

Investigation of a new mishap is really the same operation as adding records to the

mishap and factors tables, but we could no t allow "normal" users database "write" access

to these tables -- only an Administrator is authorized to add mishaps to the official

database. In addition, if a normal user were able to add records to the database, any

database replacement operation (via FTP or disk as described in Chapter 3) would

overwrite their input. A method was needed to input persistent data that would not be

overwritten by a database update (replacement operation).

The solution to this problem came in the form of a separate Access database.

Each HFACS installation includes a separate JET based database (Investigate.mdb) that

provides the local functionality for adding, editing, and deleting mishaps for investigation

purposes.

By implementing our solution in this fashion, all users can initiate an

investigation without altering the official data in the SQL Server database. Additionally,

a database replacement operation will not overwrite their saved investigations. The

Investigate.mdb module uses the same program logic as the SQL Server version of the

database and can be launched from within the main HFACS application without the user

even realizing that they are using an entirely separate program. This solution has the

added benefit of the capability to operate as its own standalone program. This is

 89

pertinent because in the event of the implementation of a key server solution at some

point in the future, users disconnected from the Internet will still have the capability to

initiate investigations -- an interesting and viable option to alleviate some of the security

concerns.

Two other interesting discoveries were made during this phase. First, the

Investigate.mdb database had to have a capability to determine what type of HFACS

implementation launched it. For example, if the user of the civilian configuration of the

database launched the investigation module, then the investigation module needed to run

with civilian options specified for inputting and editing data. The proved a somewhat

difficult problem, as we desired to maintain the ability for the Investigate.mdb program to

operate in standalone mode. For several days we experimented with command line

arguments without success. The solution was to add the "iniFile" class from the HFACS

connection component to this standalone database. In this manner, the Investigate.mdb

program is capable of reading from the HFACS.ini file to determine what mode to open

in. If the HFACS.ini file is not present, the default setting of "military" is used. This

served as a testament to the code reusability of or our project to this point.

A second and unrelated, yet interesting discovery, dealt with the usability of the

general HFACS graphical interface. A limitation of Visual Basic and Access is its

inability to automatically resize controls on a form (in a class) when the user stretches a

window. This may seem trivial, but in a data aware application that uses grid controls,

anyone using a monitor with resolution of 1024 X 768 or greater is stuck looking at a

small box in the middle of the screen that is barely legible. This problem quickly made

itself apparent during the development of the add/edit and delete classes. A search of the

Internet yielded the code for a form resizing class from Database Creations,

Incorporated. Utilizing this class we were able to provide support for dynamic resizing

of forms based on the user's screen resolution, greatly enhancing the usability of our

program.

 90

J. IMPLEMENTATION - STAGE 4

The queries, graphs, and reports classes were the final code development effort

for our implementation. The query classes were very straightforward and posed no

significant problems. Graphing and reports on the other hand, were a special challenge.

I'll describe the graphing issues first. As alluded to in Chapter 2, Access used to

support only one database engine -- JET. When support was added for SQL Server, many

of the RAD features associated with Access were not supported. Graphing is one such

example. Access does not provide the capability to pass input parameters to a bound

graph control when SQL Server is used as the data engine for an Access project. To

circumvent this problem, a Visual Basic Active-X control was utilized. Visual Basic 6.0

Enterprise Edition provides a redistributable Active-X chart library called

MSChart20.ocx. By including this library as a reference within Access, all the methods

and properties became available and an impressive set of charting options presented

itself. This control is not for the weak at heart. It is the largest Active-X control we have

ever used and documentation for it is confusing. To populate a chart requires creation of

a separate "datagrid" object. In order to use it you must programmatically define every

position in the grid including labels, font sizes, orientations, styles, and so on. Further

complicating matters, this Active-X add-in does not fully support Access. It was designed

for true Visual Basic and not VBA. Access provides no means to manipulate the

Windows clipboard objects, which are integral for sending images of MS Chart graphs to

an attached printer. To circumvent this, another dynamic link library was developed

using pure Visual Basic. Its sole purpose is to provide explicit print support to HFACS

for the Windows clipboard (HFACSClipboard.dll).

Just after getting the charts to work with sample data, we made our next

unforeseen discovery -- SQL Server does not provide embedded support for cross-tab

queries. A cross-tab query is a spreadsheet- like summary of the things specified by the

row header and column headers that is created from a table or query -- but, only when

using the JET database engine. This type of query presents summary data in a

spreadsheet-like format created from the fields that you specify. In this specialized

query, row and column totals can be generated on the fly. For example if we wanted to

 91

create a query that displays the type of aircraft field as the row heading and the third level

mishap factors as column headings, with each cell containing the total count of mishaps

for each type of aircraft with that factor, we could do it. Figure 4.31 illustrates some

sample output of such a query.

Figure 4.32. Example Crosstab Query.

This kind of query is ideal for populating datagrids for MS Chart controls, as well

as, for tabulating reports. Unfortunately, and as unbelievable as we found this to be, SQL

Server cannot create these types of queries. Weeks were spent trying to circumvent this

problem. Luckily, we discovered a R(eplacement) for the A(ccess) C(ross-tab) query.

RAC is an application that runs on SQL Server and produces two-dimensional cross-tab

reports. It was designed by Steve Dassin and was included in HFACS with his

permission [Ref. 31]. RAC has various options that make it possible to enhance the

traditional Access-JET cross-tab functionality by providing additional capabilities over

those in Access. RAC has a number of report like format capabilities that enhance the

appearance of table data. In addition to producing cross-tab reports, RAC can be used to

transpose fields, split delimited strings and create delimited strings. RAC is written in

transact-SQL exclusively for SQL Server version 7.0 and above. A set oriented approach

is employed in most places and RAC does NOT use any cursors. RAC can accommodate

any level of server and was so easy to use that we were able to create cross-tabs and

reports with it in minutes. We cannot thank Steve Dassin enough for this contribution.

Prior to implementing RAC, our graph and report queries were so complex that they took

3 - 5 minutes to return a result on a dual-processor Pentium III 550 server.

 92

Our last great challenge dealt with report generation. We feel that Access has

never offered seamless support for reports. Even today the entire report generation

interface in Access is noticeably disconnected from the rest of the program. Projects

utilizing a SQL Server engine compound the adverse effects of this discontinuity. In

order to create the types of reports we desired, support for specifying control data sources

(mapping textboxes to table fields) needed to be assigned at runtime -- after the program

was compiled. This proved extremely troublesome and we were never able to get it to

work properly. On forms, this type of runtime change is simple. Instead, we fell back on

the power of Steve Dassin's RAC and some extremely complicated transact-SQL to

generate the desired output.

K. IMPLEMENTATION - STAGE 5

Testing the newly created HFACS business logic component and its related

components (Investigate.mdb and HFACSClipboard.dll) began with small-scale tests on

the Windows 2000 and Windows 98 platforms.

1. Windows 98 Tests

On systems with full Access 2000 or newer installed, running Office Service

Release 1/1a, we found no deficiencies. The same was true of systems that utilized the

runtime version of Access provided by our program. We did make some interesting

discoveries in terms of usability, however.

First, we discovered an issue with how Windows 98 configurations connect to

other Windows 98 machines on a network. When we tried to connect a Windows 98

computer running HFACS to another Windows 98 computer running HFACS, it would

nott work. But, in a similar configuration on the Windows 2000 O/S, it would work. As

it turns out, this behavior is by design. Windows 2000 will default to a network

connection between client and server on the same network subnet using Named Pipes to

connect. This requires no additional configuration. Windows 95/98/ME computers,

however, do not support Named Pipes. For this reason, TCP/IP connections must be

used. A TCP/IP connection requires a system Data Source Name (DSN) to be built.

Once a system DSN was built, we had no problem connecting. See the Windows

95/98/ME help documentation for detailed instructions on how to build a system DSN.

 93

Second, we found that print preview support for reports in Access requires that a

default printer be installed. We realized that to actually print a report required a printer,

but we had not realized that previewing a report required one. This is caused by the

requirement for printer specific data in order for Access to generate a What You See Is

What You Get (WYSIWYG) preview. We added some error handling to prevent the

runtime version of Access from crashing when users without a printer attempt to preview

reports. Incidentally, a printer does not actually have to be connected, just installed. We

"tricked" several of our Windows computers by installing printer drivers for printers that

really did not exist -- previewing reports worked fine.

2. Windows 2000 Tests

Windows 2000 installations exhibited the same problems as Window 9X systems

in terms of report compatibility with a default printer. In general, Windows 2000 installs

proved significantly more difficult than those on Windows 9X -- the NTFS file system

was extremely troublesome to manipulate. Our application would only install to the

profile of the administrator performing the installation. Through much experimentation,

we determined that to configure HFACS for use by other than system administrators

required the following steps:

• Using the same administrator account that was used to perform the
HFACS installation, the program must be run for the first time by clicking
Start -> Programs -> HFACS-ME. When HFACS runs for the first time it
performs the actual installation of the HFACS database by attaching it to
the SQL server engine that is running on the same machine. HFACS must
be successfully connected to the SQL engine at least one time using an
administrator account before any further configuration is attempted. A
successful logon indicates that the database was properly attached to the
SQL server engine and that it can be shared for use by others. If this step
is not performed prior to giving users with other than administrator rights
access to the program, they will not be able to launch the program as they
will not have sufficient permissions to attach the database data files
(hfacs.mdf & hfacs_log.ldf) to the engine.

• Next, a copy of the folder containing the shortcut to the HFACS-ME
program must be pasted from the administrator profile to the All Users
profile. This places a program group on the start menu for all users of the
machine.

• Finally, file permissions for all users that will require access to HFACS
must be assigned to the HFACS program directory and the Visual Basic

 94

virtual machine library. Assuming a default installation and a normal
domain structure these files are located in the following directories:

• C:\Program Files\HFACS (Give Modify permissions to Domain
Users for the entire subdirectory).

• C:\Winnt\System32\msvbvm60.dll (Give Everyone permissions to
Read & Execute just this file).

The actual permissions will vary from computer to computer and domain to

domain, depending on the configuration settings of the LAN. Additionally, on computers

running Windows 2000 Professional that have Visual Basic 6.0 installed, users should be

made members of the "Power Users" built- in group in order to access HFACS.

 95

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

A well designed object-oriented system is one in which responsibilities are

allocated to classes of objects. Proper partitioning of these objects dictates a well thought

out distribution of responsibilities among subsystems. This type of system is easier to

develop, simpler to enhance, and more flexible than traditional procedural code. This

thesis described meticulous methods of software reengineering throughout the HFACS

development process in order to capitalize on the benefits that this type of object-oriented

methodology has to offer. Through our 11-month research effort, we have come to the

following conclusions with respect to our research questions:

How can a Microsoft Access based implementation provide multi-user access

to the same database in a client-server environment while ensuring the ability to

scale to a large number (potentially thousands) of users?

Our experiments with the JET and the SQL Server data engines clearly

demonstrated that JET was not capable of true multi-user access for more than a handful

of simultaneous users. The JET engine is merely a file-server and cannot perform server-

side data manipulation. The only way that Access 2000 could provide the scalability

capable of meeting our requirements was to use it in the role of a client "shell" in

conjunction with a data engine other than JET. In this manner, the functionality of a

robust data engine capable of scaling to large numbers of simultaneous users, with

support for replication, server-side querying, and automation could be implemented. Our

review of commercial products demonstrated that several databases offer this type of

functionality, but our desire to keep our solution Microsoft based, as well as, SQL

Server's royalty free distribution policy for the Microsoft Data Engine / SQL Server

Desktop Engine, made it the logical choice. Use of the SQL data engine solved the

problem of multi-user, client-server, development when using Access as a client.

 96

How can the linguistic discontinuity associated with object-oriented concepts

and relational databases be overcome when limited by requirements to use certain

types of software implementations (e.g. a Microsoft Access based solution)?

Linguistic discontinuity refers to the procedural style limitations associated with

ANSI SQL and relational databases in general. As discussed in Chapter 4, system

architecture is directly related to the answer of this question. In order to completely

overcome the limitations of relational database schema, we believe that no stored

procedures or other database server functions (e.g., triggers, views, proprietary engine

capabilities, etc.), should be used. To facilitate this, some type of software middle-tier

must be developed. This creates many complex scenarios associated with the number of

connections between instances of objects and, as an organization grows, with the number

of databases that clients have to connect to. Additionally, the amount of knowledge

needed to "add- in" a middle-tier of software associated with a specific vendor's product

can prove to be immense. We found that use of Microsoft Access was not the issue when

making our decisions related to system architecture for overcoming this intrinsic

linguistic discontinuity. Instead, the most significant issue was related to our requirement

for HFACS to operate as a stand-alone program using its own data engine in a non-

networked environment.

In our experiments, we were unable to effectively use a transaction monitor

(MTS) with MSDE. This proved prohibitive in terms of a three or more level design.

Without the ability to use MTS with MSDE, we could not programmatically create an

environment where HFACS was able to connect to the local instance of the database

engine through a completely encapsulated and totally object-oriented business logic

component. We were, however, able to successfully implement a prototype business

logic component with Access, MTS, and the Enterprise Edition of SQL Server. This

demonstrated that if the need arises for HFACS to be migrated to a thr ee-tier architecture

in support of large enterprise level operation in the future, a business logic component for

the middle-tier can be created to do it. Armed with this knowledge, we constructed our

two-tier solution to maximize its ability to be migrated to COM or DCOM supporting a

middle-tier of business logic at some point in the future. This was accomplished by

 97

placing great emphasis on object-oriented methods using classes, VBA modules, and use

of unbound controls in our Access based business logic component. Use of unbound

controls greatly increases opportunity for future code reuse by eliminating reuse issues

associated with directly linking "visually designed" controls on Access forms to tables in

the data engine.

The current military and civilian systems provide similar functionality, but

use different database schema. How can a common interface be developed for both

types of data?

As it turns out, we were able to easily identify changes in the taxonomy of our

tables to make schema conventions applicable to both civilian and military data. The

data manipulation is the same. In the future, this will most likely not be the case. The

life of a database is really comprised of many small development cycles. If the need

arises to design new data structures, our HFACS system can be migrated along two

separate development paths. Until that time, however, our solution provides a single

code base. This removes layers of complexity in terms of maintenance and design time.

We strongly recommend that any follow on development cycles continue to implement

methods which harmonize both versions of the program into a single code base for as

long as is feasible. To summarize, the solution to this research question was not to create

a common interface, but to create common data schema.

How should database schema be changed to provide the best performance,

scalability, and opportunity for code re -use?

In conjunction with our changes to streamline both military and civilian data into

common fields, we made two decisions that we feel improved the performance of our

database, without adverse impact on the ability to be scaled.

First, our decision not to enforce referential integrity (cascading deletes) except in

one instance makes our database much easier to adapt to a completely object-oriented

three-tier architecture later in its life cycle. What we are specifically referring to here are

the problems that cascading deletes can cause if, in the future, it is desired to manipulate

the HFACS database to completely object oriented code (without stored procedures,

 98

triggers, etc.). Relationships enforcing cascading deletes can limit attempts to create a

completely object-oriented middle tier while continuing to provide simultaneous support

for older, two-tier versions of the program. This will most likely be the case. We believe

that if an implementation of this type is ever developed, it will no doubt only be used on

machines running true SQL Server. Computers running MSDE will probably still rely on

the two-tier architecture as a result of the MTS add- in problems previously described.

Whatever the case, any new development of this nature will be an extremely complex

programming initiative. Our conscious effort to limit cascading deletes to the single

Mishaps-Factors relationship should help ease that burden.

The second schema change we believe improved the performance of HFACS was

to incorporate all three levels of mishap factors into a single lookup table. As described

in Chapter 4, there are only 33 third level factors. Each third level factor really defines

the second and third level factors. The decision to treat these relationships as a single

lookup table made queries less complex in the vast majority of our stored procedures.

In the past, Microsoft has deployed new versions of Microsoft Access and

Visual Basic that were not (fully) backwards compatible with previous versions.

This caused great discontent among users of applications designed to run under the

older versions of these programs. How can our systems be designed to isolate them

from problems associated with new versions of Microsoft Access? Specifically, the

pending release of Microsoft Office XP, Microsoft Office 2002 and Microsoft Visual

Basic.NET?

We feel that second to our investigation into use of the SQL Server 2000 engine to

house our data, this was the most important area of our research. As evident from the

incompatibilities we found in attempts to upsize Access 97 databases to SQL Server 7.0

and subsequent attempts to migrate from the SQL Server 7.0 format to that of SQL Server

2000, changes in Microsoft technologies are the greatest threat to the continued operation

of our program. For these reasons we attempted to utilize as many non version-specific

aspects of Access that we could.

 99

To begin with, we chose data access technologies, like ADO, that Microsoft

recommends to help ensure future product compatibility. In fact, our HFACS connection

component first tries to make its connections using SQLDMO and if this fails, it switches

to ADO. This redundancy greatly improves its ability to operate in several different

environments. Next, we implemented programming methods that Microsoft

recommended for compatibility with the next generation of Visual Basic (VB.NET).

Third, we invested in the Developer editions of Microsoft Office which allow royalty free

distribution of runtime Access. In this manner, even three years from now, when the vast

majority of Office platforms will be running Office 200X, our installation program will

still be able to install a version of Access runtime that is compatible with our current

version of HFACS -- in a manner that is nearly invisible to the user. Similarly, use of the

MSDE ensures that a compatible data engine will be available. Finally, wherever

possible, we tried to encapsulate program code outside of Access using completely

object-oriented code. To this end, we created our own stand-alone connection

component, completely isolated from Access specific connection operations. We

provided our own FTP server, our own clipboard printing dynamic link library, our own

password and security features, and our own initialization file for storing persistent data.

Furthermore, for graphing operations, we used the Visual Basic 6.0 Enterprise Edition's

MSChart Active-X library -- which, unlike the internal Access 2000 charting objects is

separately compiled and operates outside of Access. It is our intent that these measures

provide the isolation from incompatibility associated with technology changes fo r at least

five years.

What new features should be implemented to make the information systems

more user interactive and user friendly?

Several changes were made to improve the usability of HFACS. The following

list summarizes what we feel were the most dramatic:

• Support for dynamic screen resizing based upon the user's video
resolution. By providing this support, the HFACS user interface can scale
to different sizes for users with different size video monitors. This greatly
improves the legibility of form data on all platforms.

 100

• Elimination of separate menu options for query of data by a single or
multiple fields. In the old version of HFACS, there were separate options
for querying the database by single or multiple fields, this was due to the
inability to effectively add "All" as a choice in queries. This limitation
was overcome in the new version and we feel a great amount of
redundancy in the user interface was removed.

• Similarly, the old version of HFACS provided separate menus for query
by factor and for querying by summary of factors. We found this
redundant and designed the factor summary so that individual text boxes
on the summary form can be double-clicked to view detailed data
pertaining to the mishaps

• Graph support in the old program consis ted of only one type of 3D graph.
This severely limited the usefulness of graphs as plots of large amounts of
data were largely unreadable. The new version of HFACS has a much
more robust graphing interface with support for 4 different style graphs,
2D & 3D representation, transposition of axes, stacking of data series,
rotation of 3D graphs, and other improvements.

B. RECOMMENDATIONS

As already discussed, we recommend further investigation of a middle-tier of

software to support HFACS for use with Enterprise level SQL Server installations. Next,

when Visual Basic .NET becomes widely available, we recommend investigation of

improvements in the code base to port our existing code to its format. We believe this

will significantly enhance the longevity of HFACS in terms of compatibility with newer

versions of Microsoft products. Additionally, the following areas are good candidates for

further research:

• Migration of our installation program from Access 2000 SR-1 Runtime to
Access XP Runtime. This will eliminate the need for all Office service
packs prior to installation of our program -- greatly improving ease of
installation. Access XP Runtime is available only as part of the Office XP
Developer Edition (retail ~$799).

• Development of an Active X add- in to provide more robust report
capabilities. A drawback of using Access reports is that they can only be
previewed if a default printer has been specified in Windows. To
circumvent this problem, an Active-X add-in should be developed to
provide report preview functionality.

• The current version of HFACS uses database replacement as the means to
update the official HFACS data. Research should be conducted into
methods to update the existing data in the distributed instances of MSDE
using replication, rather than database replacement. Replacement

 101

HFACS.mdf and HFACAS_log.ldf files can take up to an hour to
download via FTP, whereas replication would take considerably less time
as it only needs to add new and update the changed records -- instead of
replacing them all.

• Investigation into the implementation of a key server to provide added
security for add/edit operations should be conducted. The current User ID
and Password files are stored in a hidden table in the Investigate.mdb file.
As a result, every client has its own set of user IDs and Passwords. A key
server would allow this data to be stored in a single location for all clients.

• Automated configuration of NTFS permissions. Installation of HFACS on
Windows 2000 systems using NTFS requires manual configuration of the
program after installation in order to enable it for use by "domain users."
Automated configuration is desirable, but will be considerably difficult to
implement. It would require automated detection of domain names and
automated configuration of user accounts with reference to security groups
and file permissions.

C. SUMMARY

Throughout this thesis, we have discussed many of the different alternatives

considered in the development of the new HFACS client/server system. Techniques were

described to provide sound documentation of our research, process logic, and

implementation decisions. We believe that our solution provides the best mix of

performance, scalability, and compatibility to meet the requirements of our sponsor.

From this stage, HFACS is ready for independent usability study, fielding, and follow-on

development cycles to add more functionality. We hope that the code that we worked so

hard to develop will not be the first code that will need modification when new

technologies become available -- we don't think it will. Nonetheless, in the event that it

does, the meticulous software engineering described in this thesis should provide sound

background for future changes, as well as, ample opportunity for code reuse.

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

APPENDIX A. CRC CARDS DEVELOPED FOR HFASC-ME

CRC cards developed for HFACS-ME are shown below.

A. CONNECTION COMPONENT CRC CARDS

HFACS Connection

Responsibilities:
•Provide interface to all
other classes and all
program functionality

Other Classes:
MSDE
INIFile
DiskUpdate
FTPUpdate
Logon

MSDE

Responsibilities:
•Start Server
•Stop Server
•Attach Database File
•Drop Database File

Other Classes:
Logon
INIFile

 104

Logon

Responsibilities:
•Log onto a specific
instance of SQL server

Other Classes:
MSDE
INIFile

INIFile

Responsibilities:
•Read from an INI file
•Write to an INI file

Other Classes:
Logon

DiskUpdate

Responsibilities:
•Update database from a
file on disk/network

Other Classes:
Logon
INIFile
MSDE

 105

FTPUpdate

Responsibilities:
•Update database from a
file downloaded via FTP

Other Classes:
Logon
INIFile
MSDE

FTP

Responsibilities:
•Perform internet FTP
functions

Other Classes:
FTPUpdate

B. BUSINESS LOGIC COMPONENTS CRC CARDS

Aircraft

Responsibilities:
•Table manipulation for
tblAircraft

Other Classes:
Append
Delete
Find

 106

Database Type

Responsibilities:
•Table manipulation for
tblDatabaseType

Other Classes:
Append
Delete
Find

Factors

Responsibilities:
•Table manipulation for
tblFactors

Other Classes:
Append
Delete
Find

Mishap Class

Responsibilities:
•Table manipulation for
tblMishapClass

Other Classes:
Append
Delete
Find

 107

Mishap Factors

Responsibilities:
•Table manipulation for
tblMishapFactors

Other Classes:
Append
Delete
Find

Mishap Location

Responsibilities:
•Table manipulation for
tblMishapLocation

Other Classes:
Append
Delete
Find

Mishaps

Responsibilities:
•Table manipulation for
tblMishaps

Other Classes:
Append
Delete
Find

 108

Mishap Type

Responsibilities:
•Table manipulation for
tblMishapType

Other Classes:
Append
Delete
Find

Organization

Responsibilities:
•Table manipulation for
tblOrganization

Other Classes:
Append
Delete
Find

Query Base Class

Responsibilities:
•Base Class for SQL
query operations

Other Classes:
Append
Delete
Find

 109

Append

Responsibilities:
•Interface to base class for
append query operations

Other Classes:
Query Base

Class

Delete

Responsibilities:
•Interface to base class for
Delete query operations

Other Classes:
Query Base

Class

Find

Responsibilities:
•Interface to base class for
Find query operations

Other Classes:
Query Base

Class

 110

THIS PAGE INTENTIONALLY LEFT BLANK

 111

APPENDIX B. CLASS DIAGRAMS

A. FACS.DLL CLASS DIAGRAM

iTypeLogonConstants

PROMPT = 1
NOPROMPT

<<Enum>>

(from HFACSConnection)

HFACSConnection
sUser : String
sPassword : String
sSvrName : String
sMDFName : String
sDBName : String
sInstDirectory : String
sAutomaticLogon : String
sFirstRunCheck : String
sNTAuth : String
sTypeDB : String
sTheConnectionString : String

Class_Initialize()
Init()
doConnect()
createConnectionString()
getUpdateFTP()
getUpdateDisk()
writeINIFile()
readINIFile()
<<Let>> User()
<<Get>> User()
<<Let>> Password()
<<Get>> Password()
<<Let>> ServerName()
<<Get>> ServerName()
<<Let>> DatabaseFileName()
<<Get>> DatabaseFileName()
<<Let>> DatabaseName()
<<Get>> DatabaseName()
<<Let>> AppPath()
<<Get>> AppPath()
<<Let>> AutomaticLogon()
<<Get>> AutomaticLogon()
<<Let>> FirstRunCheck()
<<Get>> FirstRunCheck()
<<Let>> UseNTAuth()
<<Get>> UseNTAuth()
<<Let>> TypeDatabase()
<<Get>> TypeDatabase()
<<Get>> ConnectionString()

<<Class Module>>

-iTypeLogon

INIFile

msWbkName : String

<<Declare>> WritePrivateProfileString()
<<Declare>> GetPrivateProfileString()
<<Declare>> GetWindowsDirectory()
Init()
WriteToIniFile()
DeleteIniSection()
DeleteIniKey()
GetIniFileName()
ReadFromIniFile()

<<Class Module>>

frmODBLogon
bWarningFlag : Boolean

chkUseNTAuth_Click()
cmdCancel_Click()
cmdOk_Click()
cmdTest_Click()
Form_Load()
testNewConn()

<<Form>>

INIFileController

Init()
readINIentries()
writeINIentries()

<<Class Modul...

UpdateController

getUpdate()
getUpdateDisk()

<<Class Modul...

frmWait

Form_GotFocus()
Form_Load()

<<Form>> Constructors

New_INIFile()
New_INIFileController()
New_HFACSConnection()
New_MSDE()

<<Module>>

frmDiskUpdate

performDiskUpdate()

<<Form>>

frmFtpUpdate
sTempJustTheFileName : String

cmdCancel_Click()
Form_Load()
cmdConnect_Click()
GotFileDoNext()
GotFileLast()
cmdDisconnect_Click()
EnableControls()
Form_Unload()

<<Form>>

MSDE
sUser : String
sPassword : String
sSvrName : String
sMDFName : String
sDBName : String
sInstDirectory : String
sAutomaticLogon : String
sFirstRunCheck : String
sNTAuth : String
sTypeDB : String

Class_Initialize()
Init()
startMSDE()
copyMDF()
dropDB()
databaseExists()
StartAndCopy()
restoreOldDB()
restartMSDE()

<<Class Module>>

HFACSMain

gdatServerStarted : Date
<<Const>> gINIFILENAME : String = "hfacs"
gStrFileName : String
gStrUID : String
gStrPWD : String
gStrServerName : String
gStrDatabaseFileName : String
gStrDatabaseName : String
gStrAppPath : String
gStrAutoLogon : String
gStrFirstRun : String
gStrNTauth : String
gStrTypeDB : String
gTheConnectionString : String
gblnPromptedLogonSuccess : Boolean
gblnFTPSuccess : Boolean
gStrTextMessage : String
gIntTimeToWait : Integer
gIntCounter : Integer
gblnNoCopyNeeded : Boolean

Main()
IsOpen()

<<Module>>

+oHFACSConnection

+oINIFile +oINIFileController

+oUpdateController

+oMSDE

CallbackCls

cFTPCBK_Complete()

<<Class Module>>

cFTPCBK
<<coclass>>

(from HFACSFTP Ver 2.0 ...

HFACSFTP.cFTPCBK

<<Implements>>

frmWelcome

cmdOk_Click()

<<Form>>

B. HFACSFTP.EXE CLASS

 112

DIAGRAM

frmTimer

Timer1_Timer()

<<Form>>

FILETIME

dwLowDateTime : Long
dwHighDateTime : Long

(from cFTP)

<<Type>>

WIN32_FIND_DATA

dwFileAttributes : Long
ftCreationTime : FILETIME
ftLastAccessTime : FILETIME
ftLastWriteTime : FILETIME
nFileSizeHigh : Long
nFileSizeLow : Long
dwReserved0 : Long
dwReserved1 : Long
cFileName : String * MAX_PATH
cAlternate : String * 14

(from cFTP)

<<Type>>

errFtpErrors

errCannotConnect = vbObjectError + 2001
errNoDirChange = vbObjectError + 2002
errCannotRename = vbObjectError + 2003
errCannotDelete = vbObjectError + 2004
errNotConnectedToSite = vbObjectError + 2005
errGetFileError = vbObjectError + 2006
errInvalidProperty = vbObjectError + 2007
errFatal = vbObjectError + 2008

(from cFTP)

<<Enum>>

FileTransferType

ftAscii = FTP_TRANSFER_TYPE_ASCII
ftBinary = FTP_TRANSFER_TYPE_BINARY

(from cFTP)

<<Enum>>

cFTPCBK

Complete()

<<Class Module>>

cFTP

<<Const>> MAX_PATH = 260
<<Const>> ERROR_NO_MORE_FILES = 18
<<Const>> INTERNET_OPEN_TYPE_DIRECT = 1
<<Const>> INTERNET_OPEN_TYPE_PROXY = 3
<<Const>> INTERNET_INVALID_PORT_NUMBER = 0
<<Const>> FTP_TRANSFER_TYPE_ASCII = &H1
<<Const>> FTP_TRANSFER_TYPE_BINARY = &H2
<<Const>> FILE_ATTRIBUTE_NORMAL = &H80
<<Const>> INTERNET_FLAG_PASSIVE = &H8000000
<<Const>> ERROR_INTERNET_EXTENDED_ERROR = 12003
<<Const>> INTERNET_SERVICE_FTP = 1
<<Const>> INTERNET_FLAG_RELOAD = &H80000000
<<Const>> INTERNET_FLAG_KEEP_CONNECTION = &H400000
<<Const>> INTERNET_FLAG_MULTIPART = &H200000
<<Const>> ERRCHANGEDIRSTR : String = "Cannot Change Directory to %s. It either doesn't exist, or is protected"
<<Const>> ERRCONNECTERROR : String = "Cannot Connect to %s using User and Password Parameters"
<<Const>> ERRNOCONNECTION : String = "Not Connected to FTP Site"
<<Const>> ERRNODOWNLOAD : String = "Couldn't Get File %s from Server"
<<Const>> ERRNORENAME : String = "Couldn't Rename File %s"
<<Const>> ERRNODELETE : String = "Couldn't Delete File %s from Server"
<<Const>> ERRALREADYCONNECTED : String = "You cannot change this property while connected to an FTP server"
<<Const>> ERRFATALERROR : String = "Cannot get Connection to WinInet.dll !"
<<Const>> SESSION : String = "CGFtp Instance"
mlINetHandle : Long
mlConnection : Long
msHostAddress : String
msUser : String
msPassword : String
msDirectory : String
ServerFileAndPath : String
DestinationFileAndPath : String

<<Declare>> Sleep()
<<Declare>> InternetFindNextFile()
<<Declare>> FtpFindFirstFile()
<<Declare>> FtpGetFile()
<<Declare>> FtpPutFile()
<<Declare>> FtpSetCurrentDirectory()
<<Declare>> InternetOpen()
<<Declare>> InternetConnect()
<<Declare>> InternetGetLastResponseInfo()
<<Declare>> FtpOpenFile()
<<Declare>> FtpDeleteFile()
<<Declare>> FtpRenameFile()
<<Declare>> InternetCloseHandle()
Class_Initialize()
Class_Terminate()
<<Let>> Host()
<<Get>> Host()
<<Let>> User()
<<Get>> User()
<<Let>> Password()
<<Get>> Password()
<<Let>> Directory()
<<Get>> Directory()
<<Get>> Connected()
Connect()
Disconnect()
GetDirectoryList()
StartGetFTP()
GetFile()
PutFile()
RenameFile()
DeleteFile()
RemoteChDir()
GetINETErrorMsg()

<<Class Module>>
+Owner

-frmTimer
-TransferType -SaveCBK

 113

APPENDIX C. DESCRIPTION OF CLASSES

A. HFACS CONNECTION CLASS

HFACSConnection

sUser : String
sPassword : String
sSvrName : String
sMDFName : String
sDBName : String
sInstDirectory : String
sAutomaticLogon : String
sFirstRunCheck : String
sNTAuth : String
sTypeDB : String
sTheConnectionString : String

Class_Initialize()
Init()
doConnect()
createConnectionString()
getUpdateFTP()
getUpdateDisk()
writeINIFile()

<<Class Module>> readINIFile()
<<Let>> User()
<<Get>> User()
<<Let>> Password()
<<Get>> Password()
<<Let>> ServerName()
<<Get>> ServerName()
<<Let>> DatabaseFileName()
<<Get>> DatabaseFileName()
<<Let>> DatabaseName()
<<Get>> DatabaseName()
<<Let>> AppPath()
<<Get>> AppPath()
<<Let>> AutomaticLogon()
<<Get>> AutomaticLogon()
<<Let>> FirstRunCheck()
<<Get>> FirstRunCheck()
<<Let>> UseNTAuth()
<<Get>> UseNTAuth()
<<Let>> TypeDatabase()
<<Get>> TypeDatabase()
<<Get>> ConnectionString()

iTypeLogonConstants:integer

Figure C.1. Class Diagram for HFACS Connection.

1. Class Description

This class is the controller class for the entire component. It is the only class with

public members accessible from outside of the component. Nothing can be manipulated

without creating an instance of this class and using its methods to indirectly utilize the

functionality of the other classes.

2. Data Member Description

iTypeLogonConstants--Enumerations for prompt/no-prompt functions in integer.

sUser--The user ID in string type.

sPassword--The user password in string type.

sSvrName --The name of the MSDE or SQL Server in string type.

sMDFName --The name of the .mdf file containing the database in string type.

 114

sDBName --The name of the database in string type.

sInstDirectory--The application path in string type.

sAutomaticLogon--Toggle to log on with/without prompt in string type.

sFirstRunCheck--Toggle for determining if this is the first run after an update in

string type.

sNTAuth--Toggle for determining if NT authentication should be used for logon

attempts in string type.

sTypeDB--The type of DB this program will represent (mil, civilian, or both) in

string type.

sTheConnectionString--Variable to hold the value of the current

connectionstring in string type.

3. Method Description

Class_Initialize() – Default no-argument constructor (initialize event).

init() --If an instance of a class is created using the psuedo-constructors from the

Constructors.bas module, this function is called to pass initial values, thereby mimicking

the behavior of a constructor with arguments. Passed in values are all required, but the

Constructors.New_HFACSConnection() function automatically sets passed-in values to

global variable values if they are left blank.

doConnect()--This procedure will make a connection to a database server based

on the value of iTypeLogonIn. If this parameter is left blank, the class determines the

appropriate type of logon to perform. This function also detects if it is the first time

HFACS has been run and displays the frmWelcome.frm as appropriate. After a

successful logon, it sets the .ini value indicating a first run to "F."

createConnectionString()--This procedure updates the value of the global

variable for the connection string that will be used for all ADO connections

(hfacsmain.gTheConnectionString). It determines f the string should use NT

authentication or regular SQL based on the global variable gStrNTauth.

 115

getUpdateFTP()--This function creates an instance of the UpdateController class,

providing access to FTP updates.

getUpdateDisk()--This function creates an instance of the UpdateController

class, providing access to update from disk functionality.

writeINIFile()--This function creates an instance of the INIFileController class,

providing methods to write to the HFACS.ini file.

readINIFile()--This function creates an instance of the INIFileController class,

providing methods to read from the HFACS.ini file.

B. ODBLOGON CLASS

frmODBLogon

bWarningFlag : Boolean

chkUseNTAuth_Click()
cmdCancel_Click()

cmdOk_Click()

cmdTest_Click()

Form_Load()

testNewConn()

<<Form>>

Figure C.2. Class Diagram for ODBLogon.

1. Class Description

This class is responsible for a prompted logon. We provide the capability to

query a user for logon parameters and test their validity against a given ins tance of a SQL

Server.

2. Data Member Description

bWarningFlag-- Warning flag indicating that the database needs to be installed

on the local server in Boolean.

 116

3. Method Description

chkUseNTAuth_Click()--This sub updates form properties when the user clicks

the "Use NT Authentication" check box. It "gray’s out" the username and password text

boxes and makes them unavailable for update.

cmdCancel_Click()--This sub closes the form.

cmdOk_Click()--This sub combines the functionality of testing the connection

with the user supplied parameters and, if the parameters are valid, updating the pertinent

global variables to enable other component class instances to function (e.g. to update the

.ini file with new settings).

cmdTest_Click()--This sub calls the testNewConn() function and returns an

appropriate message to the user.

Form_Load(()--This sub sets the states of the form controls (visible/ not visible

and enabled/ disabled) based upon current global variable settings.

testNewConn()--This sub tests the validity of the user specified connection

values by attempting to start and connect to the server. Upon successful connection to

the server specified, it verifies existence of the HFACS database on that server.

C. UPDATECONTROLLER CLASS

UpdateController

getUpdate()

getUpdateDisk()

<<Class Modul...

Figure C.3. Class Diagram for UpdateController Class.

1. Class Description

This class is the controller class for the cFTP class, the FTP form

(frmFTPUpdate), and the common dialog control for reading an update from a disk.

2. Data Member Descript ion

None.

 117

3. Method Description

getUpdate()--This function initiates the FTP update session by creating an

instance of frmFtpUpdate which actually performs the download and update.

getUpdateDisk()--This function displays the "Open" dialog box from the

Microsoft Windows Common Controls 6.0 allowing the user to identify a path on a

disk/network share where the HFACS.mdf/_log.ldf update files reside. It then copies the

files to the application path on the local machine and instantiates an instance of

frmDiskUpdate to install them.

D. DISK UPDATE CLASS

frmDiskUpdate

performDiskUpdate()

<<Form>>

Figure C.4. Class Diagram for Disk Update Class.

1. Class Description

This class is responsible for performing an update of the HFACS database from a

disk/network share.

2. Data Member Description

None

3. Method Description

performDiskUpdate()--This function performs the actual update, updating the

form as it progresses.

 118

E. FTPUPDATE CLASS

sTempJustTheFileName : String

cmdCancel_Click()
Form_Load()
cmdConnect_Click()
GotFileDoNext()
GotFileLast()
cmdDisconnect_Click()
EnableControls()
Form_Unload()

frmFtpUpdate
<<Form>>

Figure C.5. Class Diagram for FTPUpdate Class.

1. Class Description

This class is responsible for performing an update of the HFACS database via

FTP. This class uses the FTPServer.exe server and the CallbackCls.cls to receive status

messages from the HFACS FTP server. The FTP server (HFACSFTP.exe) provides the

functions needed to get FTP updates. These functions and their associated classes were

removed from this component and compiled separately in order to work around the

inability of Visual Basic to provide support for free threading. By placing the FTP

functionality in a separately compiled executable, it can run in it's own process, which

allows screen updates during long FTP downloads.

2. Data Member Description

STempJustTheFileName -- A temp string variable to simplify string

manipulation when determining paths on the FTP server and for download locations.

3. Method Description

cmdCancel_Click()--This sub closes the form.

Form_Load()--This sub resets flags when the form is opened.

cmdConnect_Click()--This sub verifies that the FTP is being performed on a

local server and intiates the FTP connection by instantiating an FTP server object. It then

downloads the first new database file (HFACS.mdf) to the application path. When

 119

download of the first file is complete, the CallbackCls interface is notified by the FTP

server, which in turn executes the download of the next file via the GotFileDoNext() sub.

GotFileDoNext()--This sub downloads the second new database file

(HFACS_log.ldf) to the application path. When download of the file is complete, the

CallbackCls interface is notified by the FTP server, which in turn executes the installation

of the 2 files via the GotFileLast() sub.

GotFileLast()--This sub performs the actual update, updating the form to show

status as it progresses.

cmdDisconnect_Click()--This sub performs disconnect from the FTP server

when it is enabled. It is not enabled except during development.

EnableControls()--This sub performs dynamically enables/disbles buttons on the

form based upon the connection state of the FTP server.

Form_Unload()--This sub performs cleanup operations, ensuring all objects are

destroyed when the form is closed.

F. MSDE CLASS

MSDE
sUser : String
sPassword : String
sSvrName : String
sMDFName : String
sDBName : String
sInstDirectory : String
sAutomaticLogon : String
sFirstRunCheck : String
sNTAuth : String
sTypeDB : String

Class_Initialize()
Init()
startMSDE()
copyMDF()
dropDB()
databaseExists()
StartAndCopy()
restoreOldDB()
restartMSDE()

<<Class Module>>

Figure C.6. Class Diagram for MSDE Class.

 120

1. Class Description

This class is responsible for starting the MSDE or SQL server, ensuring that the

HFACS database is installed, and managing database updates.

2. Data Member Description

sUser--The user ID in string type.

sPassword--The user password in string type.

sSvrName --The name of the MSDE or SQL Server in string type.

sMDFName --The name of the .mdf file containing the database in string type.

sDBName --The name of the database in string type.

sInstDirectory--The application path in string type.

sAutomaticLogon--Toggle to log on with/without prompt in string type.

sFirstRunCheck--Toggle for determining if this is the first run after an update in

string type.

sNTAuth--Toggle for determining if NT authentication should be used for logon

attempts in string type.

sTypeDB--The type of DB this program will represent (mil, civilian, or both) in

string type.

3. Method Description

Class_Initialize()—Default no argument constructor (initialize event).

Init()--If an instance of a class is created using the psuedo-constructors from the

Constructors.bas module, this function is called to pass initial values, thereby mimicking

the behavior of a constructor with arguments. Passed in values are all required, but the

Constructors.New_MSDE() function automatically sets passed- in values to global

variable values if they are left blank.

startMSDE()--This procedure will start an instance SQL Server and create a

connection to it, thereby verifying that the specified server exists and that it is started. If

the server is already running, the error trap will exit the procedure and leave the server

running. A bug in SQL Server 2000 prevents SQLDMO from starting a remote server so

 121

this code also detects the error and switches to an ADO type connection to verify that the

HFACS database is present on the remote machine. In the case of the ADO connection, a

copy the database either exists or doesn't exist on the remote server. If the ADO

connection fails, a global flag is set so that all classes in the component know not to try to

copy an instance of the database to the remote server, which would generate another

error.

copyMDF()--This procedure will check for the database on a local Server. If the

database does not exist, it will then copy and install the HFACS database from the

application path to the Server data directory making a backup copy of the old database in

case an error occurs and a restore is needed. The last two copies of the database are kept

in the server data directory in an attempt to prevent data loss.

dropDB()--This procedure will check for the database on the Server. If the

database exists it will then permanently drop it. A normal drop specifies the

bKillDBFiles parameter as False, so a backup of the database is created before dropping

it. Passing a value of true for this parameter drops the database with no backup.

databaseExists()--This procedure will connect to a SQL server that is already

running and determine if a database exists.

StartAndCopy()--This procedure combines the functionality of the startMSDE()

and copyMDF() functions with the added ability to determine if a copy is needed based

upon the results of the startMSDE() call. For example, if a remote connection is

attempted and succeeds, startMSDE() will return True, but no copy will be necessary. In

addition, this function detects if a copy failed and will attempt to repair the database by

offering an option to restore an old copy of the database. This is useful when called from

a failed FTP update attempt.

restoreOldDB()--This function is called when a copy operation fails and there is

no HFACS database file attached to the local server. Once called, this function prompts

the user to restore the old database. If the user opts to restore the database, a restore is

first attempted using the current logon information. If this attempt fails, a second attempt

is made as a "last-ditch" effort using the "sa" logon and no password. If both attempts

fail, the database will not be installed on the local server and the HFACS program will

 122

not function. System Administrator assistance will be required to attach a copy of the

database.

restartMSDE()--Before an .mdf database file can be dropped and a new file

attached, all users must be logged off. This function stops and restarts the server

effectively ensuring all users are logged off and that the server services are refreshed.

This function can only be used in conjunction with an update operation (either disk or

FTP) as it also copies the file from the download/temp copy directory (which is the

application path) to the server data directory. This copy can only be performed when the

server is stopped.

G. CALLBACK CLASS

CallbackCls

cFTPCBK_Complete()

<<Class Module>>

Figure C.7. Class Diagram for Callback Class.

1. Class Description

This class implements the cFTPCBK callback interface of the HFACS FTP

server. The methods of this class provide the means for the HFACS server to notify (or

callback) class instances from this component which utilize the FTP server functionality.

Basically, the members of this class provide a communication channel. The FTP server

(HFACSFTP.exe) provides the functions needed to get FTP updates. These functions

and their associated classes were removed from this component and compiled separately

in order to work around the inability of Visual Basic to provide support for free

threading. By placing the FTP functionality in a separately compiled executable, it can

run in it's own process, which allows screen updates during long FTP downloads.

2. Data Member Description

None

 123

3. Method Description

cFTPCBK_Complete()--An FTP update of the HFACs database requires the

download of 2 files (HFACS.mdf & HFACS_log.ldf). This function accepts messages

from the FTP server and notifies the frmFtpUpdate of progress. Specifically, of errors in

download and of successful download. If the first file is downloaded successfully

(ErrCode = True And gIntCounter = 1), then this function notifies the frmFtpUpdate to

begin the next download. After successfully downloading both files, this function closes

the frmFtpUpdate form.

H. INIFILE CLASS

INIFile

msWbkName : String

<<Declare>> WritePrivateProfileString()
<<Declare>> GetPrivateProfileString()
<<Declare>> GetWindowsDirectory()
Init()
WriteToIniFile()
DeleteIniSection()
DeleteIniKey()
GetIniFileName()
ReadFromIniFile()

<<Class Module>>

Figure C.8. INIFile Class Diagram.

1. Class Description

This class creates .ini File objects used to create, delete, set, and get values in a

standard format Microsoft .ini file. It uses calls to the Windows API for efficiency.

2. Data Member Description

msWbkName --The name of the ini file to read in string type.

3. Method Description

Init()--If an instance of a class is created using the psuedo-constructors from the

Constructors.bas module, this function is called to pass initial values, thereby mimicking

the behavior of a constructor with arguments. Passed in values are all required, but the

 124

Constructors.New_INIFile() function automatically sets passed-in values to global

variable values if they are left blank.

WriteToIniFile()--Write a section, key, and value to an .ini file.

DeleteIniSection()--Delete a section and all of its keys from an .ini file.

DeleteIniKey()--Delete a key and its value from an .ini file.

GetIniFileName()--Return name for .ini file. Name includes name of workbook

file and ".ini" extention.

ReadFromIniFile()--Read a value from an .ini file, given the file name, section,

key, and default value to return if key is not found.

I. HFACSMAIN CLASS

HFACSMain
gdatServerStarted : Date
<<Const>> gINIFILENAME : String = "hfacs"
gStrFileName : String
gStrUID : String
gStrPWD : String
gStrServerName : String
gStrDatabaseFileName : String
gStrDatabaseName : String
gStrAppPath : String
gStrAutoLogon : String
gStrFirstRun : String
gStrNTauth : String
gStrTypeDB : String
gTheConnectionString : String
gblnPromptedLogonSuccess : Boolean
gblnFTPSuccess : Boolean
gStrTextMessage : String
gIntTimeToWait : Integer
gIntCounter : Integer
gblnNoCopyNeeded : Boolean

Main()
IsOpen()

<<Module>>

Figure C.9. HFACSMain Class Diagram.

1. Class Description

This module is accessible to all classes and forms in the project. It contains

declarations for all global variables used to pass values between forms and instances of

classes.

 125

2. Data Member Description

gdatServerStarted--This variable is used by HFACSMain.Main() for initializing

the entire component. It is required for all compiled DLLs, but not used for anything

else. It is a date type.

gINIFILENAME--Constant variable to hold the name of the .ini file. It is a

string type and its value is “hfacs”. This is a global variable.

oINIFile-- Reusable object variables. These variables are used over and over by

classes and forms. They are created and destroyed within the same function whenever

possible. It is an instance of INIFile and it has global scope.

oINIFileController--Reusable object variable for the INI file control class. This

is a global variable.

oHFACSConnection--Reusable object variable for the HFACSConnection class.

This is a global variable.

oMSDE--Reusable object variable for the MSDE Class. This is a global variable.

oUpdateController--Reusable object variable for the UpdateController Class.

This is a global variable.

gStrFileName --Global variable to hold the path to the Windows system

directory. This is a string type.

gStrUID--Global variable representing the user ID in string type.

gStrPWD--Global variable representing the user password in string type.

gStrServerName --Global variable representing the name of the MSDE or SQL

Server as string type.

gStrDatabaseFileName --Global variable representing the name of the mdf file as

string type.

gStrDatabaseName --Global variable representing the name of the database as

string type.

gStrAppPath--Global variable representing the application path as string type.

gStrAutoLogon--Global variable to toggle to logon without prompt as string

type.

gStrFirstRun--Global variable representing the toggle for determining the first

time the program has been run as string type.

 126

gStrNTauth--Toggle for determining if NT authentication should be used for

logon attempts as string type.

gStrTypeDB--The type of DB this program will represent (mil, civ, or both) as

string type.

gTheConnectionString--Global variable to hold the value of the current

connectionstring as string type.

gSQLServerPath--'Global variable to hold the value of the SQL Server

subdirectory as string type.

gblnPromptedLogonSuccess--Boolean that indicates a success/failure of a

prompted logon.

gblnFTPSuccess--Boolean that indicates a success/failure of an FTP update

attempt.

gStrTextMessage --A string type that holds a message for label on frmWait.

Allows you to change the message from any location in this component.

gIntTimeToWait--An integer variable that represents the amount of time for

frmWait to count. Allows you to set the number of seconds for frmWait to actually wait.

gIntCounter--Reusable integer variable for counters throughout the component.

gblnNoCopyNeeded--Boolean for indicating no copy is necessary. This is

required when making a connection to a remote host because the SQL Server 2000

version of SQLDMO won't connect to a remote host. To work around this, an ADO

connection is attempted. If an ADO connection succeeds, then the database exists on the

server being connected to, so no copy is needed . . . and this boolean is set.

a) Method Description.

Main()--This code is executed when the component starts, in response to the first

object request. It is the "Main" procedure responsible for initializing the entire

component and is required for all compiled DLLs.

IsOpen()--Determines if a form is open or not. Useful for determining when

screen refreshes are needed.

 127

J. INIFILECONTROLLER CLASS

INIFileController

Init()

readINIentries()

writeINIentries()

<<Class Module>>

Figure C.10. INIFileController Class Diagram.

1. Class Description

This class creates instances of INIFile.cls used to create, delete, set, and get

values in a standard format Microsoft .ini file.

2. Data Member Description

None

3. Method Description

Init()--If an instance of a class is created using the psuedo-constructors from the

Constructors.bas module, this function is called to pass initial values, thereby mimicking

the behavior of a constructor with arguments. Passed in values are all required, but the

Constructors.New_INIFileController() function automatically sets passed- in values to

global variable va lues if they are left blank.

readINIentries()--This function creates an instance of the INIFile class and reads

values from the HFACS.ini file.

writeINIentries()--This function creates an instance of the INIFile class and

writes values to the HFACS.ini file.

 128

K. WAIT CLASS

frmWait

Form_GotFocus()

Form_Load()

<<Form>>

Figure C.11. Wait Class Diagram.

1. Class Description

This class is responsible for showing a status bar capable of pausing the number

of seconds specified by HFACSMain.gIntTimeToWait and displaying the message

contained in HFACSMain.gStrTextMessage.

1. Data Member Description

None

2. Method Description

Form_GotFocus()--This sub reads the values contained in the global variables to

determine how long to show itself and what message to display.

Form_Load()--This sub reads the values contained in the global variables to

determine the message to display on the form.

L. WELCOME CLASS

frmWelcome

cmdOk_Click()

<<Form>>

Figure C.12. Welcome Class Diagram.

1. Class Description

This class is responsible for displaying an all text welcome message when it is

called.

 129

2. Data Member Description

None

3. Method Description

cmdOk_Click()--This function unloads this form once the user clicks the OK

button.

M. CONSTRUCTORS CLASS

Constructors

New_INIFile()

New_INIFileController()

New_HFACSConnection()

New_MSDE()

<<Module>>

Figure C.13. Constructors Class Diagram.
1. Class Description

This module defines functions that pair creation of new object instances using the

reusable global objects defined in HFACSMain class with a call to an Init() function of

the associated class. In this manner, these functions can act as psuedo-constructors that

are capable of passing arguments -- a feature not available in Visual Basic 6.0.

2. Data Member Description

None

3. Method Description

New_INIFile()--This function acts as a psuedo-constructor. It creates a new

INIFIle object and calls the INIFile.Init() function, passing desired parameters to ensure a

consistent state.

New_INIFileController()--This function acts as a psuedo-constructor. It creates

a new INIFIleController object and calls the INIFileController.Init() function, passing

desired parameters to ensure a consistent state.

 130

New_HFACSConnection()--This function acts as a psuedo-constructor. It

creates a new HFACSConnection object and calls the HFACSConnection.init() function,

passing desired parameters to ensure a consistent state.

New_MSDE()--This function acts as a psuedo-constructor. It creates a new

MSDE object and calls the MSDE.Init() function, passing desired parameters to ensure a

consistent state.

N. ERRORLOG CLASS

cErrorLog

ClearLog()

<<Class>>

Class_Initialize()
ErrorLog()

iErrorLog:Integer

Figure C.14. ErrorLog Class Diagram.

1. Class Description

This writes status and error messages to the App.path connectionErrors.log file.

2. Data Member Description

iErrorLog--Integer value for each entry

3. Method Description

Class_Initialize()--Default no-argument constructor for (initialize event).

ErrorLog()--Open the a file called ConnectionErrLog.log in the application path

and write error entries to it.

ClearLog()--Clears the ConnectionErrLog.log.

O. FTPCBK CLASS

cFTPCBK

Complete()

<<Class Module>>

Figure C.15. FTPCBK Class Diagram.

 131

1. Class Description

The method of this class provide the means for the HFACS server to notify (or

callback) class instances from this component which utilize the FTP server functionality.

The FTP server (HFACSFTP.exe) provides the functions needed to get FTP updates.

These functions and their associated classes were compiled separately in order to work

around the inability of Visual Basic to provide support for free threading. By placing the

FTP functionality in a separately compiled executable, it can run in it's own process,

which allows screen updates during long FTP downloads.

2. Data Member Description

None

3. Method Description

Complete()--An FTP update of the HFACs database requires the download of 2

files (HFACS.mdf & HFACS_log.ldf). This function sends messages from the FTP

server and notifies the Callback class of the progress. Specifically, of errors in download

and of successful download.

P. TIMER CLASS

frmTimer

Timer1_Timer()

<<Form>>

Figure C.16. Timer Class Diagram.
1. Class Description

This class disables the timer as the FTP class initiates the change in

2. Data Member Description

None

3. Method Description

Timer1_Timer()--This procedure is executed only once per each invocation and

disables the timer.

 132

Q. FTP CLASS

HFACSConnection
INTERNET_OPEN_TYPE_PROXY

INTERNET_INVALID_PORT_NUMBER

FTP_TRANSFER_TYPE_ASCII

FTP_TRANSFER_TYPE_BINARY

FILE_ATTRIBUTE_NORMAL

INTERNET_FLAG_PASSIVE

ERROR_INTERNET_EXTENDED_ERROR

INTERNET_SERVICE_FTP

errCannotConnect

errNoDirChange

errCannotRename

cFTP
INTERNET_OPEN_TYPE_DIRECT

errCannotDelete

errNotConnectedToSite

errGetFileError

errInvalidProperty

errFatal

ftAscii

ftBinary

ERRCHANGEDIRSTR

ERRCONNECTERROR

<<Get>> Host()
<<Get>> User()
<<Let>> User()

ERRNOCONNECTION

ERRNODOWNLOAD

ERRNORENAME

ERRNODELETE

ERRALREADYCONNECTED

ERRFATALERROR

SESSION :string

mlINetHandle:long

mlConnection:long

msHostAddress :string

msUser :string

msPassword :string

msDirectory :string

ServerFileAndPath :string

DestinationFileAndPath :string

TransferType :string

<<Let>> host()
<<Let>> TypeDatabase()
ClassInitialize()

<<Let>>Password()

<<Get>>Password()
<<Get>> Directory()
<<Let>> Directory()

Connected()
Connect()
Disconnect()
GetDirectoryList()
StartGetFTP()
GetFile()
PutFile()
RenameFile()
DeleteFile()
RemoteChDir()
GetINETErrorMsg()

Figure C.17. FTP Class Diagram.

1. Class Description

This class wraps the functionality of the Win32 WinInet.DLL. It could easily be

expanded to provide HTTP/Gopher and other internet standard file protocols.

2. Data Member Description

INTERNET_OPEN_TYPE_DIRECT--Constant variable for registry access

settings.

INTERNET_OPEN_TYPE_PROXY--Constant variable for registry access

settings.

INTERNET_INVALID_PORT_NUMBER-- Constant variable for registry

access settings.

FTP_TRANSFER_TYPE_ASCII-- Constant variable for registry access

settings.

FTP_TRANSFER_TYPE_BINARY-- Constant variable for registry access

settings.

 133

FILE_ATTRIBUTE_NORMAL-- Constant variable for registry access settings.

INTERNET_FLAG_PASSIVE-- Constant variable for registry access settings.

ERROR_INTERNET_EXTENDED_ERROR--Constant variable for error

message.

INTERNET_SERVICE_FTP--Constant variable for the type of service to

access.

errCannotConnect--Variable representing a type of FTP error.

errNoDirChange -- Variable representing a type of FTP error.

errCannotRename-- Variable representing a type of FTP error.

errCannotDelete-- Variable representing a type of FTP error.

errNotConnectedToSite-- Variable representing a type of FTP error.

errGetFileError-- Variable representing a type of FTP error.

errInvalidProperty-- Variable representing a type of FTP error.

errFatal-- Variable representing a type of FTP error.

ftAscii--File transfer type (ASCII)

ftBinary-- File transfer type (Binary)

ERRCHANGEDIRSTR--Constant variable of string type with an error message.

ERRCONNECTERROR-- Constant variable of string type with an error

message.

ERRNOCONNECTION-- Constant variable of string type with an error

message.

ERRNODOWNLOAD-- Constant variable of string type with an error message.

ERRNORENAME-- Constant variable of string type with an error message.

ERRNODELETE-- Constant variable of string type with an error message.

 134

ERRALREADYCONNECTED-- Constant variable of string type with an error

message.

ERRFATALERROR-- Constant variable of string type with an error message.

SESSION-- Constant string variable that identifies the session to Windows.

mlINetHandle--Long variable that identifies the INet handle.

mlConnection--Long variable that identifies the connection handle.

msHostAddress--String variable for standard FTP properties for this class.

msUser-- String variable for standard FTP properties for this class.

msPassword-- String variable for standard FTP properties for this class.

msDirectory-- String variable for standard FTP properties for this class.

ServerFileAndPath--String variable that holds the server file path.

DestinationFileAndPath--String variable that holds the destination file path for

the downloaded files.

TransferType --String variable that indicates the type of transfer(ftp or disk).

3. Method Description

Class_Initialize()--Create Internet session handle.

Class_Terminate()--Kill off any connection and API handle.

<let> Host()-- Set the Host Name - only if not connected.

<get> Host()--Get the host name.

<let> User()--Set the user - if not connected.

<get> User()--Get the user name.

<let> Password()--Set the password - only if not connected.

<get> Password()--Get the user password.

<let> Directory()--Set the directory- only if not connected.

 135

<get> Directory()--Get the directory.

Connected()--Indicates whether the system is connected to a server. It returns a

boolean.

Connect()--This function connects to the FTP server. It will raise an error if the

system is already connected.

Disconnect()--This function disconnect from the FTP server only if the system is

currently connected.

GetDirectoryList()--Returns a Disconnected record set for the directory and filter

string.

StartGetFTP()--This function establishes the variables to start an FTP session.

GetFile()--Get the specified file to the desired location using the specified file

transfer type. This code is executed when the timer fires for the first time. It unloads the

form and destroys it completely.

PutFile()--This function copies the files to the desired path specified in the

parameter list of this function.

RenameFile()--This function renames the existing files for backup purpose. This

function maintains two backup files.

DeleteFile()--This function deletes the oldest backup as the files are copied.

RemoteChDir()--This function changes the directory remotely.

GetINETErrorMsg()--Returns an error message indicating type of error that had

occured.

 136

THIS PAGE INTENTIONALLY LEFT BLANK

 137

APPENDIX D.

MainMenu
<<Form>>

Form_Activate()
Form_Load()
Form_Open()
lblAddEditMishaps_Click()lblAddEditMishaps_MouseMove()
lblExit_Click()
lblExit_MouseMove()
lblGraph_Click()
lblGraph_MouseMove()
lblInvestigate_Click()
lblInvestigate_MouseMove ()lblQuery_Click()
lblQuery_MouseMove()
lblReport_MouseMove()
MoveToCenter()

frmSelectMishap

cmdDone_Click()

cmdViewMishap_Click()

cmdAdd_Click()

cmdKill_Click()

Form_Activate()

Form_Open()

<<Form>>

subfrmSelectMishap

Form_Open()
Frame97_AfterUpdate()
cmdFind_Click()
lblMore_Click()
tglDecending_AfterUpdate()

<<Form>>

frmEditMishap

cmdCancel_Click()
cmdCodeMaintenance_Click()
cmdSave_Click()

Form_Close()
Form_Dirty()

<<Form>>

Form_Open()
cmdPreview_Click()
MoveToCenter()

cmdDone_Click()

frmMishapDescription
<<Form>>

Form_Load()

Form_Open()

MoveToCenter ()

subfrmFactors
<<Form>>

cmdAddFactor_Click()

cmdDelFactor _Click()

FrmAddMishap
<<Form>>

cmdBack_Click()
cmdCrewCoord_Click()
cmdEnvironmental_Click()
cmdEquipment_Click()
cmdError_Click()
cmdMedical_Click()
cmdNext _Click()
cmdFinish _Click()
cmdCodeMaintenance_Click()
cmdOrganizational_Click()
cmdReadiness_Click()
cmdSupervisory_Click()
cmdViolation _Click()
cmdWorkspace_Click()
Form_Close()
Form_Open()
txtDate_GotFocus()
buisnessLogicForward()
buisnessLogicBackward()
askWhereToGo()
managementCond()
addFactor()
cmdCancel_Click()
addMishap()
Form_Load()
MaintainerCond()
WorkingCond()
MaintainerAct()
MoveToCenter ()

add factors

select mishap

add Mishap

add new factor

edit mishap

sort mishaps

get description

frmCodeMaintenance
<<Form>>

cmdClose_Click()
cmdOk_Click()

create new code

ConnectionFunctions
<<Class Module>>

CreateConnection()
InitConnection()
changeServer()
getUpdateFTP ()
getUpdateFromDisk ()
removeConnection ()
CommandbarEnable()
toggleDBType()
copyGraphToClipboard()
toggleXLabels ()
toggleYLabels ()
sendClipToPrinter()

connect

PleaseWait
<<Form>>

Command17_Click()

Form_Load()

ActualGraph<<Form>>

chkStack_AfterUpdate()chkTranspose_AfterUpdate()
chtTheGraph_LostFocus()
cmdClose _Click()cmdUpdate_Click()
Form_Close()Form_Activate()
Form_Deactivate()
Form_Load()Form_Open()
fraChart_AfterUpdate()fraDimensions_AfterUpdate()
lstShowTheseX_AfterUpdate()
lstShowTheseX_LostFocus()lstShowTheseY_AfterUpdate()
lstShowTheseY_LostFocus()Option13_LostFocus()
togEnlarge_AfterUpdate()
chtTheGraph_PointSelected()MoveToCenter()

ExpertGraph
<<Form>>

cmdClose_MouseMove()
cmdGraph_MouseMove()
cmdGraph_Click()
Form_Activate()
Form_Deactivate()
Form_Close()
Form_Load()
Form_Open()
cmdClose_Click()
MoveToCenter()

get graph

draw graph

show activity

Summary
<<Form>>

cbo*_Change()
cmdClose_Click()
cmdUpdate_Click()Form_Activate()
Form_Close()
Form_Deactivate()Form_Load()
Form_Open()
populateComboBoxWithAll ()
goGetUpdate()goGetRecords ()
storeValues()
checkIfFormIsDirty()*_DblClick()
MoveToCenter()

get summary

show progress bar

ViewMishaps
<<Form>>

cmdCancel_Click()
cmdDone_Click()
cmdPreview _Click()
Form_Activate()
Form_Deactivate()
Form_Close()
Form_Load()
Form_Open()
MoveToCenter()

show mishap

ExpertQuery
<<Form>>

Form_Activate()
Form_Deactivate()
Form_Close()
cmdBack_Click()
Form_Load()
Form_Open()
cmdView_Click()
populateComboBoxWithAll()
MoveToCenter()

view mishap

QueryMenu
<<Form>>

cmdCloseQueryMenu_Click()
cmdCloseQueryMenu_MouseMove ()
cmdExpertQuery_MouseMove()
cmdHFACS _MESummary_MouseMove()
Form_Close()
Form_Activate()
Form_Deactivate()
Form_Load()
Form_Open()
cmdCloseQueryMenu_Click()
cmdExpertQuery_Click()
MoveToCenter ()

get query menu

query

Report
<<Form>>

cmdCloseReportMenu_Click()
cmdAll_Click()
cmdAircraft_Click()
cmdClass_Click()cmdLocation _Click()
cmdOrganization_Click()
cmdType_Click()
cmdYear_Click()cmdChron_Click()
Form_Close()
Form_Activate()
Form_Deactivate()Form_Load()
Form_Open()
MoveToCenter()

get report

show progress

MainMenu
<<Form>>

Form_Activate()
Form_Load()
Form_Open()
lblAddEditMishaps_Click()lblAddEditMishaps_MouseMove()
lblExit_Click()
lblExit_MouseMove()
lblGraph_Click()
lblGraph_MouseMove()
lblInvestigate_Click()
lblInvestigate_MouseMove ()lblQuery_Click()
lblQuery_MouseMove()
lblReport_MouseMove()
MoveToCenter()

MainMenu
<<Form>>

Form_Activate()
Form_Load()
Form_Open()
lblAddEditMishaps_Click()lblAddEditMishaps_MouseMove()
lblExit_Click()
lblExit_MouseMove()
lblGraph_Click()
lblGraph_MouseMove()
lblInvestigate_Click()
lblInvestigate_MouseMove ()lblQuery_Click()
lblQuery_MouseMove()
lblReport_MouseMove()
MoveToCenter()

frmSelectMishap

cmdDone_Click()

cmdViewMishap_Click()

cmdAdd_Click()

cmdKill_Click()

Form_Activate()

Form_Open()

<<Form>>

frmSelectMishap

cmdDone_Click()

cmdViewMishap_Click()

cmdAdd_Click()

cmdKill_Click()

Form_Activate()

Form_Open()

<<Form>>

subfrmSelectMishap

Form_Open()
Frame97_AfterUpdate()
cmdFind_Click()
lblMore_Click()
tglDecending_AfterUpdate()

<<Form>>
subfrmSelectMishap

Form_Open()
Frame97_AfterUpdate()
cmdFind_Click()
lblMore_Click()
tglDecending_AfterUpdate()

<<Form>>

frmEditMishap

cmdCancel_Click()
cmdCodeMaintenance_Click()
cmdSave_Click()

Form_Close()
Form_Dirty()

<<Form>>

Form_Open()
cmdPreview_Click()
MoveToCenter()

frmEditMishap

cmdCancel_Click()
cmdCodeMaintenance_Click()
cmdSave_Click()

Form_Close()
Form_Dirty()

<<Form>>

Form_Open()
cmdPreview_Click()
MoveToCenter()

cmdDone_Click()

frmMishapDescription
<<Form>>

Form_Load()

Form_Open()

MoveToCenter ()

cmdDone_Click()

frmMishapDescription
<<Form>>

frmMishapDescription
<<Form>>

Form_Load()

Form_Open()

MoveToCenter ()

subfrmFactors
<<Form>>

cmdAddFactor_Click()

cmdDelFactor _Click()

subfrmFactors
<<Form>>

cmdAddFactor_Click()

cmdDelFactor _Click()

FrmAddMishap
<<Form>>

cmdBack_Click()
cmdCrewCoord_Click()
cmdEnvironmental_Click()
cmdEquipment_Click()
cmdError_Click()
cmdMedical_Click()
cmdNext _Click()
cmdFinish _Click()
cmdCodeMaintenance_Click()
cmdOrganizational_Click()
cmdReadiness_Click()
cmdSupervisory_Click()
cmdViolation _Click()
cmdWorkspace_Click()
Form_Close()
Form_Open()
txtDate_GotFocus()
buisnessLogicForward()
buisnessLogicBackward()
askWhereToGo()
managementCond()
addFactor()
cmdCancel_Click()
addMishap()
Form_Load()
MaintainerCond()
WorkingCond()
MaintainerAct()
MoveToCenter ()

FrmAddMishap
<<Form>>

cmdBack_Click()
cmdCrewCoord_Click()
cmdEnvironmental_Click()
cmdEquipment_Click()
cmdError_Click()
cmdMedical_Click()
cmdNext _Click()
cmdFinish _Click()
cmdCodeMaintenance_Click()
cmdOrganizational_Click()
cmdReadiness_Click()
cmdSupervisory_Click()
cmdViolation _Click()
cmdWorkspace_Click()
Form_Close()
Form_Open()
txtDate_GotFocus()
buisnessLogicForward()
buisnessLogicBackward()
askWhereToGo()
managementCond()
addFactor()
cmdCancel_Click()
addMishap()
Form_Load()
MaintainerCond()
WorkingCond()
MaintainerAct()
MoveToCenter ()

add factors

select mishap

add Mishap

add new factor

edit mishap

sort mishaps

get description

frmCodeMaintenance
<<Form>>

cmdClose_Click()
cmdOk_Click()

frmCodeMaintenance
<<Form>>

cmdClose_Click()
cmdOk_Click()

create new code

ConnectionFunctions
<<Class Module>>

CreateConnection()
InitConnection()
changeServer()
getUpdateFTP ()
getUpdateFromDisk ()
removeConnection ()
CommandbarEnable()
toggleDBType()
copyGraphToClipboard()
toggleXLabels ()
toggleYLabels ()
sendClipToPrinter()

ConnectionFunctions
<<Class Module>>

CreateConnection()
InitConnection()
changeServer()
getUpdateFTP ()
getUpdateFromDisk ()
removeConnection ()
CommandbarEnable()
toggleDBType()
copyGraphToClipboard()
toggleXLabels ()
toggleYLabels ()
sendClipToPrinter()

connect

PleaseWait
<<Form>>

Command17_Click()

Form_Load()

PleaseWait
<<Form>>

Command17_Click()

Form_Load()

ActualGraph<<Form>>

chkStack_AfterUpdate()chkTranspose_AfterUpdate()
chtTheGraph_LostFocus()
cmdClose _Click()cmdUpdate_Click()
Form_Close()Form_Activate()
Form_Deactivate()
Form_Load()Form_Open()
fraChart_AfterUpdate()fraDimensions_AfterUpdate()
lstShowTheseX_AfterUpdate()
lstShowTheseX_LostFocus()lstShowTheseY_AfterUpdate()
lstShowTheseY_LostFocus()Option13_LostFocus()
togEnlarge_AfterUpdate()
chtTheGraph_PointSelected()MoveToCenter()

ActualGraph<<Form>>

chkStack_AfterUpdate()chkTranspose_AfterUpdate()
chtTheGraph_LostFocus()
cmdClose _Click()cmdUpdate_Click()
Form_Close()Form_Activate()
Form_Deactivate()
Form_Load()Form_Open()
fraChart_AfterUpdate()fraDimensions_AfterUpdate()
lstShowTheseX_AfterUpdate()
lstShowTheseX_LostFocus()lstShowTheseY_AfterUpdate()
lstShowTheseY_LostFocus()Option13_LostFocus()
togEnlarge_AfterUpdate()
chtTheGraph_PointSelected()MoveToCenter()

ExpertGraph
<<Form>>

cmdClose_MouseMove()
cmdGraph_MouseMove()
cmdGraph_Click()
Form_Activate()
Form_Deactivate()
Form_Close()
Form_Load()
Form_Open()
cmdClose_Click()
MoveToCenter()

ExpertGraph
<<Form>>

cmdClose_MouseMove()
cmdGraph_MouseMove()
cmdGraph_Click()
Form_Activate()
Form_Deactivate()
Form_Close()
Form_Load()
Form_Open()
cmdClose_Click()
MoveToCenter()

get graph

draw graph

show activity

Summary
<<Form>>

cbo*_Change()
cmdClose_Click()
cmdUpdate_Click()Form_Activate()
Form_Close()
Form_Deactivate()Form_Load()
Form_Open()
populateComboBoxWithAll ()
goGetUpdate()goGetRecords ()
storeValues()
checkIfFormIsDirty()*_DblClick()
MoveToCenter()

Summary
<<Form>>

cbo*_Change()
cmdClose_Click()
cmdUpdate_Click()Form_Activate()
Form_Close()
Form_Deactivate()Form_Load()
Form_Open()
populateComboBoxWithAll ()
goGetUpdate()goGetRecords ()
storeValues()
checkIfFormIsDirty()*_DblClick()
MoveToCenter()

get summary

show progress bar

ViewMishaps
<<Form>>

cmdCancel_Click()
cmdDone_Click()
cmdPreview _Click()
Form_Activate()
Form_Deactivate()
Form_Close()
Form_Load()
Form_Open()
MoveToCenter()

ViewMishaps
<<Form>>

cmdCancel_Click()
cmdDone_Click()
cmdPreview _Click()
Form_Activate()
Form_Deactivate()
Form_Close()
Form_Load()
Form_Open()
MoveToCenter()

show mishap

ExpertQuery
<<Form>>

Form_Activate()
Form_Deactivate()
Form_Close()
cmdBack_Click()
Form_Load()
Form_Open()
cmdView_Click()
populateComboBoxWithAll()
MoveToCenter()

ExpertQuery
<<Form>>

Form_Activate()
Form_Deactivate()
Form_Close()
cmdBack_Click()
Form_Load()
Form_Open()
cmdView_Click()
populateComboBoxWithAll()
MoveToCenter()

view mishap

QueryMenu
<<Form>>

cmdCloseQueryMenu_Click()
cmdCloseQueryMenu_MouseMove ()
cmdExpertQuery_MouseMove()
cmdHFACS _MESummary_MouseMove()
Form_Close()
Form_Activate()
Form_Deactivate()
Form_Load()
Form_Open()
cmdCloseQueryMenu_Click()
cmdExpertQuery_Click()
MoveToCenter ()

QueryMenu
<<Form>>

cmdCloseQueryMenu_Click()
cmdCloseQueryMenu_MouseMove ()
cmdExpertQuery_MouseMove()
cmdHFACS _MESummary_MouseMove()
Form_Close()
Form_Activate()
Form_Deactivate()
Form_Load()
Form_Open()
cmdCloseQueryMenu_Click()
cmdExpertQuery_Click()
MoveToCenter ()

get query menu

query

Report
<<Form>>

cmdCloseReportMenu_Click()
cmdAll_Click()
cmdAircraft_Click()
cmdClass_Click()cmdLocation _Click()
cmdOrganization_Click()
cmdType_Click()
cmdYear_Click()cmdChron_Click()
Form_Close()
Form_Activate()
Form_Deactivate()Form_Load()
Form_Open()
MoveToCenter()

Report
<<Form>>

cmdCloseReportMenu_Click()
cmdAll_Click()
cmdAircraft_Click()
cmdClass_Click()cmdLocation _Click()
cmdOrganization_Click()
cmdType_Click()
cmdYear_Click()cmdChron_Click()
Form_Close()
Form_Activate()
Form_Deactivate()Form_Load()
Form_Open()
MoveToCenter()

get report

show progress

INIFile
<<Class>>

msWkbName: String

WriteToIniFile()

Init()

DeleteIniSection ()

DeleteIniKey()

GetIniFileName()

ReadFromIniFile()

GlobalDeclarations
<<Class Module>>

gLngMishapToGet: Long
gFormNeedsRefresh: Boolean
gBlnAddMishap : Boolean
gStrDescription: String
gStrDatabaseType: String
getDBType()
toggleDBType()

getDBTypeFromFile()
synchFileDBTypeToDbValue()

DetermineOSDeclares
<<Class Module>>

dwOSVersionInfoSize: Long
dwMajorVersion: Long
dwMinorVersion: Long
dwBuildNumber: Long
dwPlatformId: Long
<<const>> SM_CLEANBOOT
<<const>> SM_DEBUG
<<const>> SM_SLOWMACHINE
<<const>> VER_PLATFORM_WIN32s
<<const>> VER_PLATFORM_WIN32_WINDOWS
<<const>> VER_PLATFORM_WIN32_NT
IsRuntime()
IsRunning()

clFormWindow
<<Class>>

m_ hWin: Long
M_ rctWindow: RECT
RECT: Type
POINTAPI: Type
<<const>> m_ERR_INVALIDHWND
<<const>> m_ERR_NOPARENTWINDOW
RaiseError ()
UpdateWindowRect()
<<get>> hwnd ()
<<let>> hwnd()
<<get>> Left()
<<let>> Left()
<<get>> Top()
<<let>> Top()
<<get>> Height()
<<let>> Height()
<<get>> Width()
<<let>> Width()
<<get>> Parent()

ezSizingFunctions
<<Class Module>>

RECT: Type
TEXTMETRIC: Type

ezSizeForm ()
ezGetScreenRes()
ezGetScaleFactor()
ezReSize()
ezLargeFonts()

CloseCommand

MENUITEMINFO: Type

<<const>>MF_GRAYED
<<const>>MF_BYCOMMAND

<const>>SC_CLOSE

<<get>>Enabled()

<<let>>Enabled()

<<Class>>

get OS Data

INIFile
<<Class>>

msWkbName: String

WriteToIniFile()

Init()

DeleteIniSection ()

DeleteIniKey()

GetIniFileName()

ReadFromIniFile()

INIFile
<<Class>>

msWkbName: String

WriteToIniFile()

Init()

DeleteIniSection ()

DeleteIniKey()

GetIniFileName()

ReadFromIniFile()

GlobalDeclarations
<<Class Module>>

gLngMishapToGet: Long
gFormNeedsRefresh: Boolean
gBlnAddMishap : Boolean
gStrDescription: String
gStrDatabaseType: String
getDBType()
toggleDBType()

getDBTypeFromFile()
synchFileDBTypeToDbValue()

GlobalDeclarations
<<Class Module>>

gLngMishapToGet: Long
gFormNeedsRefresh: Boolean
gBlnAddMishap : Boolean
gStrDescription: String
gStrDatabaseType: String
getDBType()
toggleDBType()

getDBTypeFromFile()
synchFileDBTypeToDbValue()

DetermineOSDeclares
<<Class Module>>

dwOSVersionInfoSize: Long
dwMajorVersion: Long
dwMinorVersion: Long
dwBuildNumber: Long
dwPlatformId: Long
<<const>> SM_CLEANBOOT
<<const>> SM_DEBUG
<<const>> SM_SLOWMACHINE
<<const>> VER_PLATFORM_WIN32s
<<const>> VER_PLATFORM_WIN32_WINDOWS
<<const>> VER_PLATFORM_WIN32_NT
IsRuntime()
IsRunning()

DetermineOSDeclares
<<Class Module>>

dwOSVersionInfoSize: Long
dwMajorVersion: Long
dwMinorVersion: Long
dwBuildNumber: Long
dwPlatformId: Long
<<const>> SM_CLEANBOOT
<<const>> SM_DEBUG
<<const>> SM_SLOWMACHINE
<<const>> VER_PLATFORM_WIN32s
<<const>> VER_PLATFORM_WIN32_WINDOWS
<<const>> VER_PLATFORM_WIN32_NT
IsRuntime()
IsRunning()

clFormWindow
<<Class>>

m_ hWin: Long
M_ rctWindow: RECT
RECT: Type
POINTAPI: Type
<<const>> m_ERR_INVALIDHWND
<<const>> m_ERR_NOPARENTWINDOW
RaiseError ()
UpdateWindowRect()
<<get>> hwnd ()
<<let>> hwnd()
<<get>> Left()
<<let>> Left()
<<get>> Top()
<<let>> Top()
<<get>> Height()
<<let>> Height()
<<get>> Width()
<<let>> Width()
<<get>> Parent()

clFormWindow
<<Class>>

m_ hWin: Long
M_ rctWindow: RECT
RECT: Type
POINTAPI: Type
<<const>> m_ERR_INVALIDHWND
<<const>> m_ERR_NOPARENTWINDOW
RaiseError ()
UpdateWindowRect()
<<get>> hwnd ()
<<let>> hwnd()
<<get>> Left()
<<let>> Left()
<<get>> Top()
<<let>> Top()
<<get>> Height()
<<let>> Height()
<<get>> Width()
<<let>> Width()
<<get>> Parent()

ezSizingFunctions
<<Class Module>>

RECT: Type
TEXTMETRIC: Type

ezSizeForm ()
ezGetScreenRes()
ezGetScaleFactor()
ezReSize()
ezLargeFonts()

ezSizingFunctions
<<Class Module>>

RECT: Type
TEXTMETRIC: Type

ezSizeForm ()
ezGetScreenRes()
ezGetScaleFactor()
ezReSize()
ezLargeFonts()

CloseCommand

MENUITEMINFO: Type

<<const>>MF_GRAYED
<<const>>MF_BYCOMMAND

<const>>SC_CLOSE

<<get>>Enabled()

<<let>>Enabled()

<<Class>>

CloseCommand

MENUITEMINFO: Type

<<const>>MF_GRAYED
<<const>>MF_BYCOMMAND

<const>>SC_CLOSE

<<get>>Enabled()

<<let>>Enabled()

<<Class>>

get OS Data

 138

THIS PAGE INTENTIONALLY LEFT BLANK

 139

APPENDIX E. DESCRIPTION OF BUSINESS LOGIC CLASSES

A. INIFILE CLASS

INIFile

<<Class>>

msWkbName: String

WriteToIniFile()

Init()

DeleteIniSection()

DeleteIniKey()

GetIniFileName()

ReadFromIniFile()

Figure E.1. Class Diagram for INIFile Class.

1. Class Description

This class creates .ini File objects used to create, delete, set, and get values in a

standard format Microsoft .ini file. It uses calls to the Windows API for efficiency.

2. Data Member Description

msWkbName --The name of the ini file to read as a string type.

3. Method Description

Init() -- If an instance of a class is created using the psuedo-constructors from the

Constructors.bas module, this function is called to pass initial values, thereby mimicking

the behavior of a constructor with arguments. Passed in values are all required, but the

Constructors.New_INIFile() function automatically sets passed-in values to global

variable values if they are left blank..

WriteToINIFile() --Write a section, key, and value to an .ini file.

DeleteINISection()--Delete a section and all of its keys from an .ini file.

DeleteINIKey()--Delete a key and its value from an .ini file.

GetIniFileName()--Return name for .ini file. Name includes name of workbook

file and ".ini".

 140

ReadFromIniFile()--Read a value from an .ini file, given the file name, section,

key, and default value to return if key is not found.

B. GLOBALDECLARATIONS CLASS

GlobalDeclarations
<<Class Module>>

gLngMishapToGet: Long

gFormNeedsRefresh: Boolean
gBlnAddMishap: Boolean
gStrDescription: String
gStrDatabaseType: String

getDBType()

toggleDBType()

getDBTypeFromFile()

synchFileDBTypeToDbValue()

Figure E.2. Class Diagram for GlobalDeclaration Class.

1. Class Description

Contains all definitions for application global variables. Most of these are needed

due to the inability of VBA to pass parameters as part of a constructor.

2. Data Member Description

gLongMishapToGet -- The ID of the mishap to read as long type.

gFormNeedsRefresh -- Indicates that the form needs to be refreshed as Boolean

type.

gBlnAddMishap -- Indicates .a mishap has been added as Boolean type.

gStrDescription -- Holds the value if the description detail is too long to be held

in initial text field as string type.

gStrDatabaseTyp -- Holds the value of the database type (civilian or military) as

string type.

3. Method Description

getDBType()--Determines the type of database (military or civilian) based on the

SQL severer tblDatabaseType settings.

toggleDBType()--Toggles the current investigation module DB type.

 141

getDBTypeFromFile()--Determines the type of database (military or civilian)

based on the HFACS.ini file settings.

snchFileDBTypeToDbValue()--Ensures that this program opens in the same

mode (civilian or military) as the HFACS instance that launched it.

C. DETERMINEOSDECLARES CLASS

DetermineOSDeclares
<<Class Module>>

dwOSVersionInfoSize: Long
dwMajorVersion: Long
dwMinorVersion: Long
dwBuildNumber: Long
dwPlatformId: Long
<<const>> SM_CLEANBOOT
<<const>> SM_DEBUG
<<const>> SM_SLOWMACHINE
<<const>> VER_PLATFORM_WIN32s
<<const>> VER_PLATFORM_WIN32_WINDOWS
<<const>> VER_PLATFORM_WIN32_NT

IsRuntime()

IsRunning()

Figure E.3. Class Diagram for DetermineOSDeclares Class.

1. Class Description

Contains various functions for determining system properties like O/S type and

version of Access that is running.

2. Data Member Description

dwOSVersionInfoSize -- Holds the operating version information that pertains to

size as long type.

dwMajorVersion -- Holds the operating version information as long type.

dwMinorVersion -- Holds the operating version information as long type.

dwBuildNumber -- Holds the operating version information that pertains to the

build as long type.

 142

dwPlatformId -- Holds the operating version information as long type.

SM_CLEANBOOT -- Constant variable that holds the value 67.

SM_DEBUG -- Constant variable that holds the value 22.

SM_SLOWMACHINE -- Constant variable that holds the value 73.

VER_PLATFORM_WIN32s -- Constant variable that holds the value 0.

VER_PLATFORM_WIN32_WINDOWS -- Constant variable that holds the

value 1.

VER_PLATFORM_WIN32_NT -- Constant variable that holds the value 2.

3. Method Description

IsRuntime()--Determines if Access runtime is being used to run the application.

Access runtime has no support for reports.

IsRunning()--To prevent a second instance from loading if a user mistakenly

attempts to launch it twice. This code is called from the autoexec macro to test whether

the app is already running and terminate the launch if a copy of it is already open.

 143

D. FORMWINDOW CLASS

clFormWindow

<<Class>>

m_hWin: Long
M_rctWindow: RECT
RECT: Type
POINTAPI: Type
<<const>> m_ERR_INVALIDHWND
<<const>> m_ERR_NOPARENTWINDOW

RaiseError()
UpdateWindowRect()
<<get>> hwnd()
<<let>> hwnd()
<<get>> Left()
<<let>> Left()
<<get>> Top()
<<let>> Top()
<<get>> Height()
<<let>> Height()
<<get>> Width()
<<let>> Width()
<<get>> Parent()

Figure E.4. Class Diagram for FormWindow Class.

1. Class Description

Moves and resizes a window in the coordinate system of its parent window.

2. Data Member Description

m_hWin -- Handle of the window as long.

m_RctWindow -- Rectangle describing the sides of the last polled location of the

window as a rectangle type.

RECT -- RECT structure used for API calls.

POINTAPI—POINTAPI structure used for API calls.

m_ERR_INVALIDHWND -- Private error constants for use with RaiseError

procedure. Holds value of 1.

m_ERR_NOPARENTWINDOW -- Private error constants for use with

RaiseError procedure. Holds value of 2.

 144

3. Method Description

RaiseError()--Raises a user-defined error to the calling procedure.

UpdateWindowRect ()--Places the current window rectangle position (in pixels,

in coordinate system of parent window) in m_rctWindow.

<<get>> hwnd() -- Returns the value the user has specified for the window's

handle.

<<let>> hwnd() -- Sets the window to use by specifying its handle. Only accepts

valid window handles.

<<get>> Left() -- Returns the current position (in pixels) of the left edge of the

window in the coordinate system of its parent window.

<<let>> Left() -- Moves the window such that its left edge falls at the position

indicated (measured in pixels, in the coordinate system of its parent window).

<<get>> Top() -- Returns the current position (in pixels) of the top edge of the

window in the coordinate system of its parent window.

<<let>> Top() -- Moves the window such that its top edge falls at the position

indicated (measured in pixels, in the coordinate system of its parent window).

<<get>> Width() -- Returns the current width (in pixels) of the window.

<<let>> Width() -- Changes the width of the window to the value provided (in

pixels).

<<get>> Height() -- Returns the current height (in pixels) of the window.

<<let>> Height() -- Changes the height of the window to the value provided (in

pixels).

<<get>> Parent() -- Returns the parent window as a clFormWindow object. For

forms, this should be the Access MDI window.

 145

E. SIZING FUNCTION CLASS

ezSizingFunctions

<<Class Module>>

RECT: Type
TEXTMETRIC: Type

ezSizeForm()
ezGetScreenRes()
ezGetScaleFactor()
ezReSize()
ezLargeFonts()

Figure E.5. Class Diagram for Sizing Function Class.

1. Class Description

Contains various functions for dynamically resizing the forms in the application

based on the user's screen resolution. Created by EZ Sizing Functions, Copyright (C)

2000 Database Creations, Inc. Revision 6/14/00 based on 8/25/99 code with revisions.

2. Data Member Description

RECT -- RECT structure used for API calls.

TEXTMETRIC—TEXTMETRIC structure used for API calls.

3. Method Description

ezSizeForm ()--This subroutine will resize the form specified by parameter

xForm by the factor of ScaleFactor. If scale factor is 0 or negative, automatic scaling will

occur based on the following table.

 146

Value Forms originally designed for
0 640 x 480
-1 800 x 600
-2 1024 x 768
-3 1280 x 1024
-4 1600 x 1200
-5 1152 x 864 OR 1152 x 870

Table E.1. EzSizeForm Values.

ezGetScreenRes()--This function returns the windows screen size.

ezGetScaleFactor ()--Returns a scale factor for resizing based on the passed

parameter S which should represent the screen size a form was designed for the scale

factor returned is based on the current screen resolution.

ezReSize ()--This subroutine will resize the form based on its current dimensions.

ezLargeFonts ()--This function returns a true if large fonts are being used.

F. SELECT MISHAP CLASS

frmSelectMishap

cmdDone_Click()

cmdViewMishap_Click()

cmdAdd_Click()

cmdKill_Click()

Form_Activate()

Form_Open()

<<Form>>

Figure E.6. Class Diagram for Select Mishap Class.

1. Class Description

This class is displays all the Mishaps in the database an allows the user to sort

them by various fields in order to select a mishap to view or edit. It has buttons that

allow initiation of a new Mishap or deletion of an existing mishap.

 147

2. Data Member Description

None.

3. Method Description

cmdDone_Click() -- Closes the form.

cmdViewMishap_Click()--Opens the mishap selected in the subform.

cmdAdd_Click()--Opens the add mishap wizard.

cmdKill_Click()--Deletes the mishap selected in the subform.

Form_Activate()--Update the menu bar and see if the subform needs to be

refreshed.

Form_Load()--Dynamically resizes the form to the users screen resolution and

then centers it.

Form_Open()--Updates the menu bar and sets the MainMenu form to invisible so

that the screen is easier to view.

MoveToCenter()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built- in autocenter function, so this method is needed to fix it. Each form

gets its own version of this function so that minor adjustments can be made on a form by

form basis.

G. SUB SELECT MISHAP CLASS

subfrmSelectMishap

Form_Open()

Frame97_AfterUpdate()

cmdFind_Click()

lblMore_Click()

tglDecending_AfterUpdate()

<<Form>>

Figure E.7. Class Diagram for Sub Select Mishap Class.

 148

1. Class Description

This class is used in a form/subform relationship with the SelectMishap form. It

displays the mishaps in a sortable order.

2. Data Member Description

None.

3. Method Description

Form_Open()--Sets color values for the columns in the form as well as initial

sort order.

Frame97_AfterUpdate()--Logic module that reacts to radio button clicks. Sorts

the data on the form in the order specified.

lblMore_Click()--Reacts to the click of the "More..." box in each row of the data

in the form. Opens a form that displays a more detailed description of the mishap

because these descriptions are too big to fit in the datagrid of the form.

tglDecending_AfterUpdate()--Logic module that sorts the data on the form in

ascending or descending order based on the state of the toggle button.

H. EDIT MISHAP CLASS

frmEditMishap

cmdCancel_Click()

cmdCodeMaintenance_Click()

cmdSave_Click()

Form_Close()
Form_Dirty()

<<Form>>

Form_Open()

cmdPreview_Click()
MoveToCenter()

Figure E.8. Edit Mishap Class Diagram.

 149

1. Class Description

This class is used to edit mishaps and add factors. It is similar to the 2-0-1-2-

subFrm-View mishaps class, but offers the additional capability to edit the data in the

underlying tables.

2. Data Member Description

None.

3. Method Description

cmdCancel_Click()--Closes the form undoing changes but only for events that

have not already been refreshed. For example, if you add a factor, the entire form is

refreshed . . . so clicking cancel cannot undo the addition of the factor - you have to use

the delete button. This function is only capable of undoing actions made to controls in

the top portion of the form, and then, only if a refresh has not yet been committed.

cmdCodeMaintenance_Click()--Opens the code maintenance form.

cmdSave_Click()--Saves the state of the data and closes the form.

Form_Close ()--Closes the form.

Form_Dirty ()--If changes are made to the mishap displayed in this form then the

SelectMishap form will need to be updated when this form is closed. This function flags

a global variable so that when the SelectMishap form is reactivated, it refreshes to display

the changes.

Form_Load()--Dynamically resizes the form to the users screen resolution and

then centers it.

Form_Open()--If this form is opened from the 1-0-0-5-frm-AddMishap then the

record that was just added needs to be viewed in this form otherwise, it will display the

record passed to it in the GlobalDeclarations.gLngMishapToGet global variable.

cmdPreview_Click()--Opens the Mishap Snapshot report.

MoveToCenter()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built- in autocenter function, so this method is needed to fix it. Each form

 150

gets its own version of this function so that minor adjustments can be made on a form by

form basis.

I. MISHAP DESCRIPTION CLASS

frmMishapDescription

cmdDone_Click()

<<Form>>

Form_Load()

Form_Open()

MoveToCenter()

Figure E.9. Mishap Description Class Diagram.

1. Class Description

This class updates the menu bar and shows the value of the description for the

mishap stored.

2. Data Member Description

None.

3. Method Description

cmdDone_Click ()--Closes the form.

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centers it.

Form_Open ()--Updates the menu bar and sets shows the value of the description

for the mishap stored in the GlobalDeclarations.gStrDescription global variable.

MoveToCenter()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built- in autocenter function, so this method is needed to fix it. Each form

gets its own version of this function so that minor adjustments can be made on a form by

form basis.

 151

J. FACTORS CLASS

subfrmFactors
<<Form>>

cmdAddFactor_Click()
cmdDelFactor_Click()

Figure E.10. Factors Class Diagram.

1. Class Description

This class is used in a form/subform relationship with the EditMishap form to

display, add, and delete factors to a mishap.

2. Data Member Description

None.

3. Method Description

cmdAddFactor_Click ()--Adds a blank factor to the mishap indicated by the

GlobalDeclarations.gLngMishapToGet global variable.

cmdDelFactor_Click ()--Deletes the factor with the current focus.

 152

K. ADD MISHAP CLASS

FrmAddMishap
<<Form>>

cmdBack_Click()
cmdCrewCoord_Click()

cmdEnvironmental_Click()
cmdEquipment_Click()

cmdError_Click()
cmdMedical_Click()
cmdNext_Click()
cmdFinish_Click()
cmdCodeMaintenance_Click()
cmdOrganizational_Click()

cmdReadiness_Click()
cmdSupervisory_Click()
cmdViolation_Click()
cmdWorkspace_Click()

Form_Close()
Form_Open()
txtDate_GotFocus()

buisnessLogicForward()
buisnessLogicBackward()

askWhereToGo()
managementCond()
addFactor()
cmdCancel_Click()
addMishap()
Form_Load()
MaintainerCond()
WorkingCond()
MaintainerAct()
MoveToCenter()

Figure E.11. Add Mishap Class Diagram.

1. Class Description

This class is a wizard used to add Mishaps to the database. The illusion of many

forms is created using a TAB control on the form and setting the "tab style" property to

"None". THIS IS IMPORTANT. The only way to edit the other pages of the tab control

is to set the tab property to "Tabs" when the form is in design view and then change it

back to "None" when finished. If you don't do this, you cannot edit any of the pages of

the wizard except the first one. After a mishap is added, the EditMishap form is opened

with the newly added Mishap selected for editing. This allows the user to immediately

add Factors without having to go back to the main menu.

2. Data Member Description

None.

3. Method Description

cmdBack_Click ()--Switches form focus back one tab in the tab view control.

 153

cmdNext_Click ()--Switches form focus forward one tab in the tab view control.

cmdFinish_Click ()--Adds the mishap to the database and opens the edit form so

that the user can add factors.

cmdCodeMaintenance_Click ()--Opens the code maintenance form.

cmdCrewCoord_Click ()--For controlling movement between pages not capable

of movement using the "next" function.

cmdEnvironmental_Click ()--For controlling movement between pages not

capable of movement using the "next" function.

cmdEquipment_Click ()--For controlling movement between pages not capable

of movement using the "next" function.

cmdError_Click ()--For controlling movement between pages not capable of

movement using the "next" function.

cmdMedical_Click ()--For controlling movement between pages not capable of

movement using the "next" function.

cmdOrganizational_Click ()--For controlling movement between pages not

capable of movement using the "next" function.

cmdReadiness_Click ()--For controlling movement between pages not capable of

movement using the "next" function.

cmdSupervisory_Click ()--For controlling movement between pages not capable

of movement using the "next" function.

cmdViolation_Click ()--For controlling movement between pages not capable of

movement using the "next" function.

cmdWorkspace_Click ()--For controlling movement between pages not capable

of movement using the "next" function.

Form_Close ()--Closes the form.

 154

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centers it.

Form_Open ()--Initializes all variables.

txtDate_GotFocus ()--Ensures date fields are properly formatted to medium date.

businessLogicForward ()--Logic to determine what page to go in the forward

direction.

businessLogicBackward ()--Logic to determine what page to go in the Reverse

direction.

askWhereToGo ()--Logic to determine what page to go to based on user input.

managementCond ()--For prompting users for type of 1st level factor to input.

maintainerCond ()--For prompting users for type of 1st level factor to input.

workingCond ()--For prompting users for type of 1st level factor to input.

maintainerAct ()--For prompting users for type of 1st level factor to input.

addFactor ()--Creates a new default factor.

cmdCancel_Click ()--Closes the form undoing changes.

addMishap ()--Creates a new default Mishap.

MoveToCenter ()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built- in autocenter function, so this method is needed to fix it. Each form

gets its own version of this function so that minor adjustments can be made on a form by

form basis.

L. CODE MAINTENANCE CLASS

frmCodeMaintenance
<<Form>>

cmdClose_Click()

cmdOk_Click()

Figure E.12. Code Maintenance Class Diagram.

 155

1. Class Description

Allows an Administrator to add codes directly to the database code lookup tables.

2. Data Member Description

None.

3. Method Description

cmdClose_Click()--Closes the form.

cmdOk_Click()--Opens the appropriate table for direct editing based on the radio

button selection in the frame.

M. CLOSE COMMAND CLASS

CloseCommand

MENUITEMINFO: Type

<<const>>MF_GRAYED

<<const>>MF_BYCOMMAND

<const>>SC_CLOSE

<<get>>Enabled()

<<let>>Enabled()

<<Class>>

Figure E.13. Close Command Class Diagram.
1. Class Description

Disables the Access close button on the base Access application window.

2. Data Member Description

MENUITEMINFO--MENUITEMINFO structure used for API calls.

MF_GRAYED--Constant value holding the value H1.

MF_BYCOMMAND--Constant value holding the value H0.

SC_CLOSE --Constant value holding the value HF060.

3. Method Description

<<get>> Enabled ()--Grays out the close button on the Access window.

<<let>> Enabled ()--Grays out the close button on the Access window.

 156

N. CONNECTION FUNCTIONS CLASS

ConnectionFunctions

<<Class Module>>

CreateConnection()
InitConnection()
changeServer()
getUpdateFTP()
getUpdateFromDisk()
removeConnection()
CommandbarEnable()
toggleDBType()
copyGraphToClipboard()
toggleXLabels()
toggleYLabels()
sendClipToPrinter()

Figure E.14. Connection Functions Class Diagram.

1. Class Description

This module contains the vast majority of the "helper” functions used by the

program. It contains functions for connecting and disconnecting the application to a SQL

server, replacing the database via FTP and disk file, toggling database type, printing the

MS Chart graphs from the windows clipboard, as well as, all command bar functions and

command bar menu scripts.

2. Data Member Description

None.

3. Method Description

CreateConnection ()--Connects the application to a SQL server and provides the

interface for the HFACS.dll. Read the initial values for most global program variables

from the HFACS.ini file via the HFACS.dll and the SQL Server that becomes connected.

Verifies the database type and ensure that the Server being connected to is of the proper

type (military vice civilian).

 157

InitConnection ()--Disables the Access "close" button on the main access

window, preventing users from improperly shutting down the application. Launches the

"Please Wait" form while the connection to the SQL server is initialized, giving the

illusion of separate threads of execution and providing the user a screen to look at during

this long process.

ChangeServer()--Provides the functionality to change server connections via the

HFACS.dll.

getUpdateFTP()--Provides the functionality replace the database on the local

SQL server via an FTP process. The user must be logged on with the sa account, being

an administrator is not enough.

GetUpdateFromDisk()--Provides the functionality replace the database on the

local SQL server via an file on a CD or network share process. The user must be logged

on with the sa account, being an administrator is not enough.

removeConnection()--Properly disconnects the application from the SQL server

and terminates the Access session.

CommandbarEnable()--Allows manipulation of command (menu bars). This

function has four arguments: Cmdbar is a CommmandBar object that represents the

command bar containing the menu item to be enabled or disabled. CmdBarEnabled is a

Boolean value in which you pass "True" or "False" in order to enable or disable the menu

item being manipulated. TopLevel is an integer representing the index of the Top- level

menu item being manipulated. Sublevel is an optional integer representing the index of

the menu item being manipulated under the Top- level menu item.

toggleDBType()--Properly disconnects the application from the SQL server and

terminates the Access session.

copyGraphToClipboard()--Copies the MS Chart object on form

TheActualGraph to the windows clipboard.

toggleXLabels()--Toggles the X axis values visible/hidden for the MS Chart

object on form TheActualGraph.

 158

toggleYLabels()--Toggles the Y axis values vis ible/hidden for the MS Chart

object on form TheActualGraph.

sendClipToPrinter()--Prints the MS Chart object on form TheActualGraph.

O. PLEASE WAIT CLASS

PleaseWait
<<Form>>

Command17_Click()

Form_Load()

Figure E.15. Please Wait Class Diagram.

1. Class Description

This class is the splash screen that user sees at program initiation. It is

responsible for setting global properties for the session at startup.

2. Data Member Description

None.

3. Method Description

Command17_Click ()--Closes the form. This button is not visible during normal

program operation and must be turned on in design view to use it. It is provided for

troubleshooting connection problems which often result in a "hang" at this screen with

now way to terminate program execution unless this button is enabled.

Form_Load ()--Sets the global properties for the session. This includes

application icon, margins, and other default behaviors.

 159

P. MAIN MENU CLASS

MainMenu

<<Form>>

Form_Activate()
Form_Load()
Form_Open()
lblAddEditMishaps_Click()
lblAddEditMishaps_MouseMove()
lblExit_Click()
lblExit_MouseMove()
lblGraph_Click()
lblGraph_MouseMove()
lblInvestigate_Click()
lblInvestigate_MouseMove()
lblQuery_Click()
lblQuery_MouseMove()
lblReport_MouseMove()
MoveToCenter()

Figure E.16. Main Menu Class Diagram.

1. Class Descript ion

This class is the main switchboard for the program. It is responsible for launching

all other processes, connecting to the SQL server, validating Administrator settings, and

determining O/S platform.

2. Data Member Description

None.

3. Method Descript ion

Form_Activate ()--Update the menu bar.

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centers it.

Form_Open()--Set initial screen colors, determine OS type, and initiate

connection to the SQL Server.

 160

lblAddEditMishaps_Click()--Only Administrators can access the administration

functions and then, only for the local machine. This function ensures that the user is a

Window O/S Administrator, a SQL Server Administrator, and an HFACS Administrator.

If all these tests are passed, then the SelectMishap form is opened.

lblAddEditMishaps_MouseMove()--Sets command button text colors.

lblExit_Click()--Closes the program and properly disconnects from the SQL

server.

lblExit_MouseMove()--Sets command button text colors.

lblGraph_Click()--Opens the Expert graph form (form-ExpertGraph).

lblGraph_MouseMove()--Sets command button text colors.

lblInvestigate_Click()--Launches the Invetigate.mdb Access database in a

separate process.

lblInvestigate_MouseMove()--Sets command button text colors.

lblQuery_Click()--Opens the Expert graph form (form-QueryMenu).

lblQuery_MouseMove()--Sets command button text colors.

lblReport_MouseMove()--Sets command button text colors.

MoveToCenter()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built- in autocenter function, so this method is needed to fix it. Each form

gets its own version of this function so that minor adjustments can be made on a form by

form basis.

 161

Q. ACTUAL GRAPH CLASS

ActualGraph
<<Form>>

chkStack_AfterUpdate()
chkTranspose_AfterUpdate()
chtTheGraph_LostFocus()
cmdClose_Click()
cmdUpdate_Click()
Form_Close()
Form_Activate()
Form_Deactivate()
Form_Load()
Form_Open()
fraChart_AfterUpdate()
fraDimensions_AfterUpdate()
lstShowTheseX_AfterUpdate()
lstShowTheseX_LostFocus ()
lstShowTheseY_AfterUpdate()
lstShowTheseY_LostFocus ()
Option13_LostFocus()
togEnlarge_AfterUpdate()
chtTheGraph_PointSelected()
MoveToCenter()

Figure E.17. Actual Graph Class Diagram.

1. Class Description

Uses the MSChart20 Active-X control to create a graph based upon global

variables passed from the ExpertGraph form. The MSChart20 control creates a graph

based upon values in its DataGrid. The datagrid is not visible and must be populated

completely via code. Various methods in this class are used to populate the datagrid and

then show portions of it based on input from the user. The datagrid data is obtained from

the RAC (Replacement For Access Crosstab) stored procedures to create the crosstab

results based on the values of GlobalDeclarations.gStrXFieldToGraph and

GlobalDeclarations.gStrYFieldToGraph

2. Data Member Description

None.

 162

3. Method Description

chkStack_AfterUpdate ()--Sets the Stacking option of the MSChart control in

response to a checkbox update.

chkTranspose_AfterUpdate ()--Sets the DataSeriesInRow option of the

MSChart control in response to a checkbox update.

chtTheGraph_LostFocus ()--Updates the "Tips" label with information for the

user.

cmdClose_Click ()--Closes the form.

cmdUpdate_Click ()--Rebuilds the MSChart20 control's Datagrid based upon

lstShowTheseX_AfterUpdate() and lstShowTheseY_AfterUpdate() information (which

corresponds to the users selections in the X and Y axis list box selection criteria).

Form_Close ()--Closes the form.

Form_Activate ()--Update the menu bar.

Form_Deactivate ()--Updates the menu bar.

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centers it.

Form_Open ()--Builds the MSChart20 control's Datagrid based upon the results

of a RAC stored procedure (4-0-1-0-flanCrossTabForGraphing). Also, sets up visual

aspects of the graph and populates the X and Y multi-select listboxes with values.

fraChart_AfterUpdate ()--Sets the ChartType option of the MSChart control in

response to a radio button selection. It has to check the value of fraDimensions to do

this, so it knows if the chart should be 2d or 3d.

fraDimensions_AfterUpdate ()--Sets the ChartType option with respect to

number of dimensions (2d or 3d) of the MSChart control in response to a radio button

selection. It has to check the value of fraChartType to do this, so it knows what style

chart to create.

 163

lstShowTheseX_AfterUpdate ()--Builds the array used by cmdUpdate_Click() to

update the datagrid rows (X Axis) based on the users X-axis selections.

lstShowTheseY_AfterUpdate ()--Builds the array used by cmdUpdate_Click() to

update the datagrid columns (Y Axis) based on the users Y-axis selections.

lstShowTheseY_LostFocus ()--Updates the "Tips" label with information for the

user.

lstShowTheseX_LostFocus ()--Updates the "Tips" label with information for the

user.

Option13_LostFocus()--Updates the "Tips" label with information for the user.

togEnlarge_AfterUpdate()--Enlarges or shrinks the form using the ezSizeForm

class.

chtTheGraph_PointSelected()--Updates the "Tips" label with information

specified when the user clicks on a data point in the MSChart20 object.

MoveToCenter()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built- in autocenter function, so this method is needed to fix it. Each form

gets its own version of this function so that minor adjustments can be made on a form by

form basis.

R. EXPERT GRAPH CLASS

ExpertGraph
<<Form>>

cmdClose_MouseMove()
cmdGraph_MouseMove()
cmdGraph_Click()
Form_Activate()
Form_Deactivate()
Form_Close()
Form_Load()
Form_Open()
cmdClose_Click()
MoveToCenter()

Figure E.18. Expert Graph Class Diagram.

 164

1. Class Description

This class is used to select the X and Y axis criteria and pass the users selections

to global variables that the form TheActualGraph can use to display the graph.

2. Data Member Description

None.

3. Method Description

cmdClose_MouseMove ()--Changes the color of the command button text in

response to a mouse move event.

cmdGraph_MouseMove ()--Changes the color of the command button text in

response to a mouse move event.

cmdGraph_Click ()--Passes the appropriate field names corresponding to user

choices for X and Y axis graph criteria to global variables for the TheActualGraph form

to actually create the graph.

Form_Activate ()--Update the menu bar.

Form_Deactivate ()--Updates the menu bar.

Form_Close ()--Closes the form.

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centers it.

Form_Open ()--Updates the menu bar and sets the focus to the close button.

cmdClose_Click ()--Closes the form.

MoveToCenter()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built- in autocenter function, so this method is needed to fix it. Each form

gets its own version of this function so that minor adjustments can be made on a form by

form basis.

 165

S. SUMMARY CLASS

Summary

<<Form>>

cbo*_Change()
cmdClose_Click()
cmdUpdate_Click()
Form_Activate()
Form_Close()
Form_Deactivate()
Form_Load()
Form_Open()
populateComboBoxWithAll()
goGetUpdate()
goGetRecords()
storeValues()
checkIfFormIsDirty()
*_DblClick()
MoveToCenter()

Figure E.19. Summary Class Diagram.

1. Class Description

This class is used to depict the table of factor vs. mishap counts and percentages.

It allows the user to select criteria from combo boxes and fills then calculates the values

for the table when the user clicks update.

When the form opens, it populates the combo boxes by running UNION queries

to build the recordsets needed to serve as control sources. This is necessary to add the

"<All>" choice. The only exception is the "Year" combo box. It uses a string

manipulation function called populateComboBoxWithAll() to build a value list. This is

necessary because the UNION method will only work with non- integer data types. The

problem with the populateComboBoxWithAll() method is that it is limited in size to

about 50 two dimensional entries. In addition, commas and semi-colons create problems

and must be removed from the string during build.

 166

Finally, when the user clicks double clicks a label in the table, code is executed

that builds the input string for stored procedure flanCountflanFilteredMishaps which is

the recordsource for the ViewMishaps form. this input string is then passed to the "view"

form via a global variable and the viewMishaps form is opened.

2. Data Member Description

None.

3. Method Description

cbo*_Change ()--Used to mark the form as dirty (needing an update).Saves the

state of the data (and size of the form). Applies to all methods that start with cbo and

ends with _Change.

cmdClose_Click ()--Closes the form.

cmdUpdate_Click()--Updates all data on the form by calling goGetUpdate().

Form_Activate()--Update the menu bar.

Form_Close()--Closes the form.

Form_Deactivate()--Update the menu bar.

Form_Load()--Dynamically resizes the form to the users screen resolution and

then centers it.

Form_Open()--Populates combo boxes. In order to allow the combo boxes to

offer <All> as a choice, 2 methods are needed -- one for integers and another for strings.

The populateComboBoxWillAll() subroutine is used for integers (like the Mishap Year),

while stored procedures are used for strings.

Important to note that the populateComboBoxWillAll() will not work for creating

strings of more than about 50 entries because the combo box rejects them as too, long.

Stored procedures, however, do not suffer from this limitation.

populateComboBoxWithAll()--Makes a connection to the stored procedure

passed-in and builds an string that can be used by a combo box to display and

"iNumberColToGet" column drop down list. It has to check every record for commas

and semi-colons in the data because the combo box interprets these two characters as

 167

delimiters, so they must be replaced with some other character (a "-" is what we are using

here).

goGetUpdate()--Builds the input string to pass based on the users combo box

selection and uses this information to query again the underlying recordsource for this

form. This updates the table to show the counts corresponding to the user's combo box

criteria.

goGetRecords()--Builds the input string to pass to the stored procedure to get the

correct records. Order of these if statements must match the SP. If <All> was selected,

then pass '' so that the SP knows the value is NULL. Once the input string is built, the 2-

0-1-2-frm-ViewMishaps form is opened.

storeValues()--Store the values of the filter boxes on form open and after every

update so that you have something to compare current values to. This way, you can trap

when users make changes.

checkIfFormIsDirty()--If the user changed values in the combo boxes but has

not updated the form, tell him about it and give the option to refresh before viewing

records. If you don't do this, then the user might change the combo box criteria and then

forget to hit the update button before double-clicking one of the boxes. This could create

confusing results.

*_DblClick()--Private subs-for detecting box double clicks follow. Three

subroutines are needed for each box. One for the label and one form each text box

(number and percentage). This applies to all functions that has _DblClick on its name.

MoveToCenter()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built- in autocenter function, so this method is needed to fix it. Each form

gets its own version of this function so that minor adjustments can be made on a form by

form basis.

 168

T. VIEW MISHAPS CLASS

ViewMishaps
<<Form>>

cmdCancel_Click()
cmdDone_Click()
cmdPreview_Click()
Form_Activate()
Form_Deactivate()
Form_Close()
Form_Load()
Form_Open()
MoveToCenter()

Figure E.20. View Mishaps Class Diagram.

1. Class Description

This class is used to view the mishaps with factors. It does not allow input, edit,

or deletion of data. It is called by both the ExpertQueryForm and the Summary form.

Becuase it is called by two different forms, it has the capability to determine which stored

procedure to use as a record source based on the value of the

GlobalDeclarations.bUseHFACSSummaryQuery global variable.

2. Data Member Description

None.

3. Method Description

cmdCancel_Click ()--Saves the state of the data (and size of the form) and closes

the form.

cmdDone_Click ()--Closes the form.

Form_Activate ()--Update the menu bar.

Form_Close ()--Resets the flag used to tell the form which stored procedure to

use for a record source.

Form_Deactivate ()--Update the menu bar.

 169

Form_Load ()--Dynamically resizes the fo rm to the users screen resolution and

then centers it.

Form_Open()--Determines which stored procedure to use as a record source

based on the value of the GlobalDeclarations.bUseHFACSSummaryQuery global

variable.

cmdPreview_Click ()--If this program is being run with full-blown Access, this

function opens the Mishap report. If it is being run with Runtime Access, then there is no

support for reports and an error message is displayed.

MoveToCenter()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built- in autocenter function, so this method is needed to fix it. Each form

gets its own version of this function so that minor adjustments can be made on a form by

form basis.

U. EXPERT QUERY CLASS

ExpertQuery
<<Form>>

Form_Activate()
Form_Deactivate()
Form_Close()
cmdBack_Click()
Form_Load()
Form_Open()
cmdView_Click()
populateComboBoxWithAll()
MoveToCenter()

Figure E.21. Expert Query Class Diagram.

1. Class Description

This form allows the user to choose multiple criteria from a series of combo boxes

and then query the database to open the ViewMishaps form and display the mishaps and

factors.

When the form opens, it populates the combo boxes by running UNION queries

to build the recordsets needed to serve as control sources. This is necessary to add the

 170

"<All>" choice. The only exception is the "Year" combo box. It uses a string

manipulation function called populateComboBoxWithAll() to build a value list. This is

necessary because the UNION method will only work with non- integer data types. The

problem with the populateComboBoxWithAll() method is that it is limited in size to

about 50 two dimensional entries. In addition, commas and semi-colons create problems

and must be removed from the string during build.

Finally, when the user clicks "View", code is executed that builds the input string

for stored procedure flanCountflanFilteredMishaps which is the recordsource for the

ViewMishaps form. This input string is then passed to the "view" form via a global

variable and the viewMishaps form is opened.

2. Data Member Description

None.

3. Method Description

Form_Activate ()--Update the menu bar.

Form_Deactivate ()--Update the menu bar.

Form_Close ()--Updates the menu bar.

cmdBack_Click ()--Closes the form.

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centers it.

Form_Open()--Populates combo boxes. In order to allow the combo boxes to

offer <All> as a choice, 2 methods are needed -- one for integers and another for strings.

The populateComboBoxWillAll() subroutine is used for integers (like the Mishap Year),

while stored procedures are used for strings. Important to note that the

populateComboBoxWillAll() will not work for creating strings of more than about 50

entries because the combo box rejects them as too, long. Stored procedures, however, do

not suffer from this limitation.

cmdView_Click ()--Builds the input string to pass to the stored procedure to get

the correct records. Order of these if statements must match the SP. If <All> was

selected, then pass '' so that the SP knows the value is NULL. Once the input string is

 171

built, a stored procedure is run from within this function to determine if there are actually

any records in the database matching the users selections. If no records match, ane error

message is displayed. Otherwise the 2-0-1-2-frm-ViewMishaps form is opened.

populateComboBoxWithAll ()--Makes a connection to the stored procedure

passed-in and builds an string that can be used by a combo box to display and

"iNumberColToGet" column drop down list. It has to check every record for commas

and semi-colons in the data because these two characters are interpreted by the combo

box as delimiters, so they must be replaced with some other character (a "-" is what we

are using here).

MoveToCenter()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built- in autocenter function, so this method is needed to fix it. Each form

gets its own version of this function so that minor adjustments can be made on a form by

form basis.

V. QUERY MENU CLASS

QueryMenu

<<Form>>

cmdCloseQueryMenu_Click()
cmdCloseQueryMenu_MouseMove()
cmdExpertQuery_MouseMove()
cmdHFACS_MESummary_MouseMove()
Form_Close()
Form_Activate()
Form_Deactivate()
Form_Load()
Form_Open()
cmdCloseQueryMenu_Click()
cmdExpertQuery_Click()
MoveToCenter()

Figure E.22. Query Menu Class Diagram.

 172

1. Class Description

This class is the form for selecting the type of query to run. It has no special

functionality or recordsource.

2. Data Member Description

None.

3. Method Description

cmdCloseQueryMenu_Click ()--Closes the form.

cmdCloseQueryMenu_MouseMove ()--Update text color on the command

buttons in response to mouse over events.

cmdExpertQuery_MouseMove ()--Update text color on the command buttons in

response to mouse over events.

cmdHFACS_MESummary_MouseMove ()--Update text color on the command

buttons in response to mouse over events.

Form_Close ()--Closes the form.

Form_Activate ()--Update the menu bar.

Form_Deactivate ()--Update the menu bar.

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centers it.

Form_Open ()--Updates the menu bar and sets the focus to the first command

button, setting its color to blue.

cmdCloseQueryMenu_Click()--Opens the Summary form.

cmdCloseQueryMenu_Click()--Opens the ExpertQueryForm form.

MoveToCenter()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built- in autocenter function, so this method is needed to fix it. Each form

gets its own version of this function so that minor adjustments can be made on a form by

form basis.

 173

W. REPORT CLASS

Report

<<Form>>

cmdCloseReportMenu_Click()
cmdAll_Click()
cmdAircraft_Click()
cmdClass_Click()
cmdLocation_Click()
cmdOrganization_Click()
cmdType_Click()
cmdYear_Click()
cmdChron_Click()
Form_Close()
Form_Activate()
Form_Deactivate()
Form_Load()
Form_Open()
MoveToCenter()

Figure E.23. Report Class Diagram.

1. Class Description

This class is the form for selecting the type of report to run.

2. Data Member Description

None.

3. Method Description

cmdCloseReportMenu_Click ()--Closes the form.

cmdAll_Click ()--Launch the report for all field values in response to command

button click event.

cmdAircraft_Click ()--Launch the report for sorting by aircraft reports in response

to command button click event.

cmdClass_Click ()--Launch the report for sorting by Class reports in response to

command button click event.

 174

cmdLocation_Click ()--Launch the report for sorting by location reports in

response to command button click event.

cmdOrganization_Click ()--Launch the report for sorting by organization reports

in response to command button click event.

cmdType_Click ()--Launch the report for sorting by type reports in response to

command button click event.

cmdYear_Click ()--Launch the report for sorting by year reports in response to

command button click event.

cmdChron_Click ()--Launch the report for sorting by chronology reports in

response to command button click event.

Form_Close ()--Closes the form.

Form_Activate ()--Update the menu bar.

Form_Deactivate()--Update the menu bar.

Form_Load()--Dynamically resizes the form to the users screen resolution and

then centers it.

Form_Open()--Updates the menu bar and sets the focus to the first command

button, setting its color to blue.

MoveToCenter()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built- in autocenter function, so this method is needed to fix it. Each form

gets its own version of this function so that minor adjustments can be made on a form by

form basis.

 175

APPENDIX F. BUSINESS LOGIC COMPONENT CODE

Class-clForm Window
Option Compare Database
Option Explicit

'***
' Type declarations
'***
Private Type RECT 'RECT structure used for API calls.
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type

Private Type POINTAPI 'POINTAPI structure used for API
calls.
 X As Long
 Y As Long
End Type

'***
' Member variables
'***
Private m_hWnd As Long 'Handle of the window.
Private m_rctWindow As RECT 'Rectangle describing the
sides of the last polled location of the window.

'***
' Private error constants for use with RaiseError procedure
'***
Private Const m_ERR_INVALIDHWND = 1
Private Const m_ERR_NOPARENTWINDOW = 2

'***
' API function declarations
'***
Private Declare Function apiIsWindow Lib "user32" Alias
"IsWindow" (ByVal hwnd As Long) As Long

Private Declare Function apiMoveWindow Lib "user32"
Alias "MoveWindow" (ByVal hwnd As Long, ByVal X As
Long, ByVal Y As Long, _
 ByVal nWidth As Long, ByVal nHeight As Long, ByVal
bRepaint As Long) As Long
 'Moves and resizes a window in the coordinate system of
its parent window.

Private Declare Function apiGetWindowRect Lib "user32"
Alias "GetWindowRect" (ByVal hwnd As Long, lpRect As
RECT) As Long
 'After calling, the lpRect parameter contains the RECT
structure describing the sides of the window in screen
coordinates.

Private Declare Function apiScreenToClient Lib "user32"
Alias "ScreenToClient" (ByVal hwnd As Long, lpPoint As
POINTAPI) As Long
 'Converts lpPoint from screen coordinates to the
coordinate system of the specified client window.

Private Declare Function apiGetParent Lib "user32" Alias
"GetParent" (ByVal hwnd As Long) As Long
 'Returns the handle of the parent window of the specified
window.

' CLASS DESCRIPTION
'###
'Class Name: clFormWindow.bas
'
'Author: Pat Flanders & Scott Tufts
'
'Description: Moves and resizes a window in the coordinate
system
' of its parent window.
'
'References: None
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: RaiseError()
'
'Description: Raises a user-defined error to the calling
procedure.
'
'Input: None
'
'Output: None
'
'References: None
'===
Private Sub RaiseError(ByVal lngErrNumber As Long,
ByVal strErrDesc As String)

 ERR.Raise vbObjectError + lngErrNumber,
"clFormWindow", strErrDesc

End Sub

'===
'Function/Sub Name: UpdateWindowRect()
'
'Description: Places the current window rectangle position (in
'pixels, in coordinate system of parent window) in
m_rctWindow.
'
'Input: None
'
'Output: None
'

 176

'References: None
'===
Private Sub UpdateWindowRect()

 Dim ptCorner As POINTAPI

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 apiGetWindowRect m_hWnd, m_rctWindow
'm_rctWindow now holds window coordinates in screen
coordinates.

 If Not Me.Parent Is Nothing Then
 'If there is a parent window, convert top, left of
window from screen coordinates to parent window
coordinates.
 With ptCorner
 .X = m_rctWindow.Left
 .Y = m_rctWindow.Top
 End With

 apiScreenToClient Me.Parent.hwnd, ptCorner

 With m_rctWindow
 .Left = ptCorner.X
 .Top = ptCorner.Y
 End With

 'If there is a parent window, convert bottom, right of
window from screen coordinates to parent window
coordinates.
 With ptCorner
 .X = m_rctWindow.Right
 .Y = m_rctWindow.Bottom
 End With

 apiScreenToClient Me.Parent.hwnd, ptCorner

 With m_rctWindow
 .Right = ptCorner.X
 .Bottom = ptCorner.Y
 End With
 End If
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Sub

'===
' Public read-write properties follow
'===
Public Property Get hwnd() As Long
'Returns the value the user has specified for the window's
handle.

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 hwnd = m_hWnd
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

Public Property Let hwnd(ByVal lngNewValue As Long)

'Sets the window to use by specifying its handle.
'Only accepts valid window handles.

 If lngNewValue = 0 Or apiIsWindow(lngNewValue) Then
 m_hWnd = lngNewValue
 Else
 RaiseError m_ERR_INVALIDHWND, "The value
passed to the hWnd property is not a valid window handle."
 End If

End Property

Public Property Get Left() As Long
'Returns the current position (in pixels) of the left edge of the
window in the coordinate system of its parent window.

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 Left = m_rctWindow.Left
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

Public Property Let Left(ByVal lngNewValue As Long)
'Moves the window such that its left edge falls at the position
indicated
'(measured in pixels, in the coordinate system of its parent
window).

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 With m_rctWindow
 apiMoveWindow m_hWnd, lngNewValue, .Top,
.Right - .Left, .Bottom - .Top, True
 End With
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

'--

Public Property Get Top() As Long
'Returns the current position (in pixels) of the top edge of the
window in the coordinate system of its parent window.

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 Top = m_rctWindow.Top
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

Public Property Let Top(ByVal lngNewValue As Long)
'Moves the window such that its top edge falls at the position
indicated

 177

'(measured in pixels, in the coordinate system of its parent
window).

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 With m_rctWindow
 apiMoveWindow m_hWnd, .Left, lngNewValue,
.Right - .Left, .Bottom - .Top, True
 End With
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

'--

Public Property Get Width() As Long
'Returns the current width (in pixels) of the window.

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 With m_rctWindow
 Width = .Right - .Left
 End With
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

Public Property Let Width(ByVal lngNewValue As Long)
'Changes the width of the window to the value provided (in
pixels).

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 With m_rctWindow
 apiMoveWindow m_hWnd, .Left, .Top,
lngNewValue, .Bottom - .Top, True
 End With
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

'--

Public Property Get Height() As Long
'Returns the current height (in pixels) of the window.

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 With m_rctWindow
 Height = .Bottom - .Top
 End With
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

Public Property Let Height(ByVal lngNewValue As Long)
'Changes the height of the window to the value provided (in
pixels).

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 With m_rctWindow
 apiMoveWindow m_hWnd, .Left, .Top, .Right - .Left,
lngNewValue, True
 End With
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

'===
' Public read-only properties follow
'===
Public Property Get Parent() As clFormWindow
'Returns the parent window as a clFormWindow object.
'For forms, this should be the Access MDI window.

 Dim fwParent As New clFormWindow
 Dim lngHWnd As Long

 If m_hWnd = 0 Then
 Set Parent = Nothing
 ElseIf apiIsWindow(m_hWnd) Then
 lngHWnd = apiGetParent(m_hWnd)
 fwParent.hwnd = lngHWnd
 Set Parent = fwParent
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

 Set fwParent = Nothing

End Property

 178

CLASS-CloseCommand

Option Compare Database
Option Explicit
'###
' CLASS DESCRIPTION
'###
'Class Name: CloseCommand.bas
'
'Author: Pat Flanders & Scott Tufts. Adapted from the
Microsoft
'knowledgebase.
'
'Description: Disables the Access close button on the base
Access
'application window.
'
'References: None
'
'###

'***
' DECLARES
'***
Private Declare Function GetSystemMenu Lib "user32"
(ByVal hwnd As Long, _
 ByVal bRevert As Long) As Long

Private Declare Function EnableMenuItem Lib "user32"
(ByVal hMenu As _
 Long, ByVal wIDEnableItem As Long, ByVal wEnable As
Long) As Long

Private Declare Function GetMenuItemInfo Lib "user32"
Alias _
 "GetMenuItemInfoA" (ByVal hMenu As Long, ByVal un
As Long, ByVal b As _
 Long, lpMenuItemInfo As MENUITEMINFO) As Long

Private Type MENUITEMINFO
 cbSize As Long
 fMask As Long
 fType As Long
 fState As Long
 wID As Long
 hSubMenu As Long
 hbmpChecked As Long

 hbmpUnchecked As Long
 dwItemData As Long
 dwTypeData As String
 cch As Long
End Type

Const MF_GRAYED = &H1&
Const MF_BYCOMMAND = &H0&
Const SC_CLOSE = &HF060&

'***
' PUBLIC PROPERTIES
'***
Public Property Get Enabled() As Boolean
 Dim hwnd As Long
 Dim hMenu As Long
 Dim result As Long
 Dim MI As MENUITEMINFO

 MI.cbSize = Len(MI)
 MI.dwTypeData = String(80, 0)
 MI.cch = Len(MI.dwTypeData)
 MI.fMask = MF_GRAYED
 MI.wID = SC_CLOSE
 hwnd = Application.hWndAccessApp
 hMenu = GetSystemMenu(hwnd, 0)
 result = GetMenuItemInfo(hMenu, MI.wID, 0, MI)
 Enabled = (MI.fState And MF_GRAYED) = 0
End Property

Public Property Let Enabled(boolClose As Boolean)
 Dim hwnd As Long
 Dim wFlags As Long
 Dim hMenu As Long
 Dim result As Long

 hwnd = Application.hWndAccessApp
 hMenu = GetSystemMenu(hwnd, 0)
 If Not boolClose Then
 wFlags = MF_BYCOMMAND Or MF_GRAYED
 Else
 wFlags = MF_BYCOMMAND And Not MF_GRAYED
 End If
 result = EnableMenuItem(hMenu, SC_CLOSE, wFlags)
End Property

 179

FORMCLASS-1-0-0-1-frm-SelectMishap

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-0-frm-SelectMishap
'
'Author: Pat Flanders & Scott Tufts
'
'This class is displays all the Mishaps in the database an
allows the
'user to sort them by various fields in order to select a mishap
'to view or edit. It has buttons that allow initiation of a new
'Mishap or deletion of an existing mishap.
'
'References:
' - 1-0-0-1-subFrm-SelectMishap
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdDone_Click()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdDone_Click()

 DoCmd.Close acForm, "1-0-0-0-frm-SelectMishap"

End Sub

'===
'Function/Sub Name: cmdViewMishap_Click()
'
'Description: Opens the mishap selected in the subform.
'
'Input: None
'
'Output: None
'
'References: GlobalDeclarations.gLngMishapToGet is a
global variable
'holding the value of the mishap ID
'
'===
Private Sub cmdViewMishap_Click()

 On Error GoTo errorHandler
 GlobalDeclarations.gLngMishapToGet =
Me.Manage_Mishaps.Form![MishapID]
 Me.TxtGlobalFocus.Value =
GlobalDeclarations.gLngMishapToGet
 Me.Visible = False

 DoCmd.OpenForm "1-0-0-2-frm-EditMishap"
 Exit Sub

errorHandler:
 DoCmd.Beep
 MsgBox "There are no Mishaps t o select!", vbOKOnly +
vbExclamation, "Error"

End Sub

'===
'Function/Sub Name: cmdAdd_Click()
'
'Description: Opens the add mishap wizard.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdAdd_Click()

 Me.Visible = False
 DoCmd.OpenForm "1-0-0-5-frm-AddMishap"

End Sub

'===
'Function/Sub Name: cmdKill_Click()
'
'Description: Deletes the mishap selected in the subform.
'
'Input: None
'
'Output: None
'
'References: GlobalDeclarations.gLngMishapToGet is a
global variable
'holding the value of the mishap ID
'
'===
Private Sub cmdKill_Click()

 On Error GoTo errorHandler

 'Store the value of the mishap selected in the subform in a
 'global variable.
 GlobalDeclarations.gLngMishapToGet =
Me.Manage_Mishaps.Form![MishapID]

 'Also, store it in a text box.
 Me.TxtGlobalFocus.Value =
GlobalDeclarations.gLngMishapToGet

 180

 Dim response As Variant

 DoCmd.Beep
 response = MsgBox("You are about to permanently delete
the record for MISHAP #" & Me.TxtGlobalFocus.Value & "
and all its related Factors." & Chr(13) & Chr(13) & "It is
STRONGLY recommended that you do not delete mishaps
from the database because this removes all references of
them." & Chr(13) & Chr(13) & "Do you want to delete this
Mishap record despite this warning?", vbYesNo +
vbQuestion + vbDefaultButton2, "Permanently Delete
Mishap?")

 If response = vbYes Then

 'Declare objects for querying a stored procedure to get
the new record
 Dim rsTheNewMishap As New Recordset
 Dim commandADO As New ADODB.Command
 Dim conADO As New ADODB.Connection

 ' This is where we create the Connection object.
 Set conADO = CurrentProject.Connection

 rsTheNewMishap.Open "DELETE tblMishaps WHERE
tblMishaps.MishapID=" & Me.TxtGlobalFocus.Value,
conADO, , , adCmdText

 'Destroy objects used for t he query
 Set commandADO = Nothing
 Set conADO = Nothing
 Set rsTheNewMishap = Nothing

 Me.Manage_Mishaps.Requery

 End If

 Exit Sub

errorHandler:

 DoCmd.Beep
 MsgBox "There are no MishapDates to delete!", vbOKOnly
+ vbExclamation, "Error"

End Sub

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar and see if the subform
needs to
'be refreshed.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()

 'Disable database replacement if not logged-in as local.

 Dim bTemp As Boolean
 If GlobalDeclarations.gStrServerName = "(local)" Then
 bTemp =
CommandbarEnable(CommandBars("mnuAdmin"), True, 2)
 Else
 bTemp =
CommandbarEnable(CommandBars("mnuAdmin"), False, 2)
 End If
 Application.CommandBars("mnuAdmin").Visible = True

 'Refresh the form if returning from a process that made it
dirty.
 If GlobalDeclarations.gFormNeedsRefresh = True Then
 Me.Manage_Mishaps.Requery
 GlobalDeclarations.gFormNeedsRefresh = False
 End If

End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Close()

 Application.CommandBars("mnuProgramMain").Visible =
True
 Forms![MainMenu].Visible = True

End Sub

'===
'Function/Sub Name: Form_Deactivate()
'
'Description: Updates the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Deactivate()
 Application.CommandBars("mnuAdmin").Visible = False
End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None

 181

'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 'Dynamically resize the form based on screen resolution.
 ezSizeForm Me, -1
 MoveToCenter "1-0-0-0-frm-SelectMishap"
End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: Updates the menu bar and sets the MainMenu
form to
'invisible so that the screen is easier to view.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Open(Cancel As Integer)

 'Disable database replacement if not logged-in as local.
 Dim bTemp As Boolean
 If GlobalDeclarations.gStrServerName = "(local)" Then
 bTemp =
CommandbarEnable(CommandBars("mnuAdmin"), True, 2)
 Else
 bTemp =
CommandbarEnable(CommandBars("mnuAdmin"), False, 2)
 End If
 Application.CommandBars("mnuAdmin").Visible = True

 Forms![MainMenu].Visible = False

 On Error Resume Next

 Me.TxtGlobalFocus.Value =
GlobalDeclarations.gLngMishapToGet

 DoCmd.GoToControl "Manage_Mishaps"

End Sub

'==========================

'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow

''===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

'===
'Function/Sub Name: Label127_DblClick()
'
'Description: Easter Egg Code. No further explanation
provided.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Label127_DblClick(Cancel As Integer)
 DoCmd.OpenForm "EasterEgg"
End Sub

 182

FORMCLASS-1-0-0-1-subfrm-SelectMishap

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-1-subfrm-SelectMishap
'
'Author: Pat Flanders & Scott Tufts
'
'This class is used in a form/subform relationship with the
'1-0-0-0-frm-SelectMishap form. It displays the mishaps in a
'sortable order.
'
'References:
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Form_Open()
'
'Description: Sets color values for the columns in the form as
well
'as initial sort order.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Open(Cancel As Integer)

 Me.tglDecending.Value = 0
 Me.OrderBy = "[MishapDate] ASC"
 Me.MishapDate.ForeColor = RGB(10, 140, 50)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)

End Sub

'===
'Function/Sub Name: Frame97_AfterUpdate()
'
'Description: Logic module that reacts to radio button clicks.
Sorts
'the data on the form in the order specified.
'
'Input: None
'

'Output: None
'
'References: None
'
'===
Private Sub Frame97_AfterUpdate()

 If Me.Frame97 = 1 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[MishapDate] DESC"
 Else
 Me.OrderBy = "[MishapDate] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(10, 140, 50)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 2 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[OrgID_FK] DESC"
 Else
 Me.OrderBy = "[OrgID_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(10, 140, 50)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 3 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[Aircraft_FK] DESC"
 Else
 Me.OrderBy = "[Aircraft_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(10, 140, 50)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 4 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[Class_FK] DESC"
 Else
 Me.OrderBy = "[Class_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(10, 140, 50)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 5 Then
 If Me.tglDecending.Value = -1 Then

 183

 Me.OrderBy = "[MishapLocation] DESC"
 Else
 Me.OrderBy = "[MishapLocation] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(10, 140, 50)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 6 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[Type_FK] DESC"
 Else
 Me.OrderBy = "[Type_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(10, 140, 50)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 7 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[MishapID] DESC"
 Else
 Me.OrderBy = "[MishapID] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(10, 140, 50)
 End If

End Sub

'===
'Function/Sub Name: lblMore_Click()
'
'Description: Reacts to the click of the "More..." box in each
row
'of the data in the form. Opens a form that displays a more
detailed
'description of the mishap because these descriptions are too
big
'to fit in the datagrid of the form.
'
'Input: None
'
'Output: None
'
'References:
' - 1-0-0-3-PopUpFrm-MishapDescriptio n
'
'===
Private Sub lblMore_Click()
 gStrDescription = Me.lblDescription.Value
 DoCmd.OpenForm "1-0-0-3-PopUpFrm-
MishapDescription"

End Sub

'===
'Function/Sub Name: t glDecending_AfterUpdate()
'
'Description: Logic module that sorts the data on the form in
'acending or descending order based on the state of the toggle
button.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub tglDecending_AfterUpdate()

 If Me.Frame97 = 1 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[MishapDate] DESC"
 Else
 Me.OrderBy = "[MishapDate] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(10, 140, 50)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 2 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[OrgID_FK] DESC"
 Else
 Me.OrderBy = "[OrgID_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(10, 140, 50)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 3 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[Aircraft_FK] DESC"
 Else
 Me.OrderBy = "[Aircraft_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(10, 140, 50)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 4 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[Class_FK] DESC"
 Else
 Me.OrderBy = "[Class_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)

 184

 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(10, 140, 50)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 5 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[MishapLocation] DESC"
 Else
 Me.OrderBy = "[MishapLocation] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(10, 140, 50)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 6 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[Type_FK] DESC"
 Else
 Me.OrderBy = "[Type_FK] ASC"

 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(10, 140, 50)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 7 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[MishapID] DESC"
 Else
 Me.OrderBy = "[MishapID] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(10, 140, 50)
 End If

End Sub

 185

FORMCLASS-1-0-0-2-frm-EditMishap

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-2-frm-EditMishap
'
'Author: Pat Flanders & Scott Tufts
'
'This class is used to edit mishaps and add factors. It is
similar
'to the 2-0-1-2-subFrm-View mishaps class, but offers the
additional
'capability to edit the data in the underlying tables.
'
'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance
' - 1-0-0-4-subFrm-Factors
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdCancel_Click()
'
'Description: Closes the form undoing changes BUT ONLY
for events
'that have not already been refreshed. For example, if you
add
'a factor, the entire form is refreshed . . . so clicking cancel
'cannot undo the addition of the factor - you have to use the
'delete button. This function is only capble of undoing
actions
'made to controls in the top portion of the form, and then,
only
'if a refresh has not yet been committed.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdCancel_Click()

On Error GoTo Err_CmdCancel_Click

 DoCmd.DoMenuItem acFormBar, acEditMenu, acUndo, ,
acMenuVer70
 DoCmd.Close

Exit_CmdCancel_Click:
 Exit Sub

Err_CmdCancel_Click:
 DoCmd.Close

End Sub

'===
'Function/Sub Name: cmdCodeMaintenance_Click()
'
'Description: Opens the code maintenance form.
'
'Input: None
'
'Output: None
'
'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance
'
'===
Private Sub cmdCodeMaintenance_Click()
 DoCmd.OpenForm "1-0-0-7-PopUpFrm-
CodeMaintenance"
End Sub

'===
'Function/Sub Name: cmdSave_Click()
'
'Description: Saves the state of the data and closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdSave_Click()

 On Error GoTo Err_Blanks:

 DoCmd.Requery

Exit_cmdSave:
 DoCmd.Close
 Exit Sub

Err_Blanks:
 GoTo Exit_cmdSave

End Sub

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar.

'
'Input: None
'
'Output: None
'
'References: None
'

 186

'===
Private Sub Form_Activate()
 Application.CommandBars("mnuOther").Visible = True
End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Close()
 Forms![1-0-0-0-frm-SelectMishap].Visible = True
End Sub

'===
'Function/Sub Name: Form_Deactivate()
'
'Description: Updates the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
=========================
Private Sub Form_Deactivate()
 Application.CommandBars("mnuOther").Visible = False
End Sub

'===
'Function/Sub Name: Form_Dirty()
'
'Description: If changes are made to the mishap displayed in
this form
'then the 1-0-0-0-frm-SelectMishap form will need to be
updated when
'this form is closed. This function flags a global variable so
that
'when the 1-0-0-0-frm-SelectMishap form is reactivated, it
refreshes
'to display the changes.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Dirty(Cancel As Integer)
 'MsgBox "The form is now dirty"
 GlobalDeclarations.gFormNeedsRefresh = True
End Sub

'===

'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "1-0-0-2-frm-EditMishap"
End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: If this form is opened from the 1-0-0-5-frm-
AddMishap
'then the record that was just added needs to be viewed in this
form
'otherwise, it will display the record passed to it in the
'GlobalDeclarations.gLngMishapToGet global variable.
'Input: None
'
'Output: None
'
'References:
' - GlobalDeclarations
'
'===
Private Sub Form_Open(Cancel As Integer)

 Application.CommandBars("mnuOther").Visible = True

 'Set the unique table for the underlying stored procedure
with code
 'becuase it sometimes dissapears when using the visual
property sheet.
 Me.UniqueTable = "tblMishaps"

 'Check to see if you are coming here from the Add Mishap
Wizard or just
 'from the select mishap form.
 If GlobalDeclarations.gBlnAddAMishap = True Then
 DoCmd.Close acForm, "1-0-0-5-frm-AddMishap"
 GlobalDeclarations.gBlnAddAMishap = False

 'Declare objects for querying a stored procedure to get
the new record
 Dim rsTheNewMishap As New Recordset
 Dim commandADO As New ADODB.Command
 Dim conADO As New ADODB.Connection

 ' This is where we create the Connection object.
 Set conADO = CurrentProject.Connection

 'Figure out what record was just added
 rsTheNewMishap.Open "SELECT max(MishapID)
FROM tblMishaps", conADO, , , adCmdText
 rsTheNewMishap.MoveFirst

 187

 GlobalDeclarations.gLngMishapToGet =
rsTheNewMishap.Fields(0)

 'Destroy objects used for the query
 Set commandADO = Nothing
 Set conADO = Nothing
 Set rsTheNewMishap = Nothing

 'Set the inputparameters for opening the form
 Me.InputParameters = "@MishapID int= " &
GlobalDeclarations.gLngMishapToGet

 'Set the Title in the form header
 Me.txtTitle.Value = [MishapID] & " - " & [OrgName] &
" - " & [Aircraft_FK]
 Else
 'This is a normal edit (not an add)
 'Set the inputparameters for opening the form
 Me.InputParameters = "@MishapID int= " &
GlobalDeclarations.gLngMishapToGet

 'Set the Title in the form header
 Me.txtTitle.Value = [MishapID] & " - " & [OrgName] &
" - " & [Aircraft_FK]
 End If

End Sub

'===
'Function/Sub Name: cmdPreview_Click()
'
'Description: Opens the Mishap Snapshot report.
'
'Input: None
'
'Output: None
'
'References:
' - 1-0-MishapSnapshot-OpenMishaps
'
'===
Private Sub cmdPreview_Click()

 On Error GoTo startError

 Me.Refresh

 GlobalDeclarations.gLngMishapToGet = Me.txtMishapID

 DoCmd.OpenReport "1-0-MishapSnapshot-
OpenMishaps", acViewPreview

exitSub:

Exit Sub

startError:

 MsgBox "You must have a default printer installed in
order to preview reports.", vbCritical + vbOKOnly, "Can't
Find A Printer"

End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 188

FORMCLASS-1-0-0-3-PopUpFrm-MishapDescription

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-3-PopUpFrm-MishapDescription
'
'Author: Pat Flanders & Scott Tufts
'
'This class is
'
'References:
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdDone_Click()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdDone_Click()
 DoCmd.Close acForm, "1-0-0-3-PopUpFrm-
MishapDescription"
End Sub

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar.

'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()
 Application.CommandBars("mnuOther").Visible = True
End Sub

'===
'Function/Sub Name: Form_Deactivate()

'
'Description: Updates the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Deactivate()
 Application.CommandBars("mnuOther").Visible = False
End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "1-0-0-3-PopUpFrm-
MishapDescription"
End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: Updates the menu bar and sets shows the value
of the
'description for the mishap stored in the
GlobalDeclarations.gStrDescription
'global variable.
'
'Input: None
'
'Output: None
'
'References:
' - GlobalDeclarations
'
'===
Private Sub Form_Open(Cancel As Integer)
 Application.CommandBars("mnuOther").Visible = True
 Me.txtDescription = GlobalDeclarations.gStrDescription
End Sub

'===
'Function/Sub Name: MoveToCenter()
'

 189

'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow

'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 190

FORMCLASS-1-0-0-4-subfrm-Factors

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-4-subfrm-Factors
'
'Author: Pat Flanders & Scott Tufts
'
'This class is used in a form/subform relationship with the
'1-0-0-2-frm-EditMishap form to display, add, and delete
factors
'to a mishap.
'
'References:
' - 1-0-0-2-frm-EditMishap
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdAddFactor_Click()
'
'Description: Adds a blank factor to the mishap indicated by
the
'GlobalDeclarations.gLngMishapToGet global variable.
'
'Input: None
'
'Output: None
'
'References:
' - GlobalDeclarations

''===
=
Private Sub cmdAddFactor_Click()

 On Error GoTo Err_cmdAddFactor_Click

 DoCmd.SetWarnings (False) 'Turn off warning messages
 Me.AllowAdditions = True 'Toggle the form to allow
addition of records

 DoCmd.GoToRecord , , acNewRec 'Create a new record
 Me.txtMishapID.Value =
GlobalDeclarations.gLngMishapToGet 'Set the value of the
Mishap
 Me.txtFactorSummary.Value = "Please enter a short
summary description of the Factor."

 Me.cbo3rdLevelCode.Value = "UNK"
 DoCmd.DoMenuItem acFormBar, acRecordsMenu,
acSaveRecord, , acMenuVer70 'Save the record
 Me.AllowAdditions = False 'Toggle back to not allow
addition of records
 Me.Refresh 'Refresh so the user can see the changes
 Me.Recordset.MoveLast 'Move to the record just created
 DoCmd.SetWarnings (True)

Exit_cmdAddFactor_Click:
 Exit Sub

Err_cmdAddFactor_Click:

 MsgBox ERR.Description
 Resume Exit_cmdAddFactor_Click

End Sub

'===
'Function/Sub Name: cmdDelFactor_Click()
'
'Description: Deletes the factor with the current focus.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdDelFactor_Click()
On Error GoTo Err_cmdDelFactor_Click

 'Uncomment this Code to add constraints to ensure at -least
1 Factor per Mishap
 'If Me.txtRecordCount.Value = 1 Then
 ' DoCmd.Beep
 ' MsgBox "Every project must have at least one Factor.
You can't delete the last Factor, but you can modify it.",
vbOKOnly + vbExclamation, "You Must Have One Factor"
 ' GoTo Exit_cmdDelFactor_Click
 'End If

 DoCmd.DoMenuItem acFormBar, acEditMenu, 8, ,
acMenuVer70
 DoCmd.DoMenuItem acFormBar, acEditMenu, 6, ,
acMenuVer70

Exit_cmdDelFactor_Click:
 Exit Sub

Err_cmdDelFactor_Click:
 MsgBox ERR.Description
 Resume Exit_cmdDelFactor_Click

End Sub

 191

FORMCLASS-1-0-0-5-frm-AddMishap

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-5-frm-AddMishap
'
'Author: Pat Flanders & Scott Tuft s
'
'This class is a wizard used to add Mishaps to the database.
The
'illusion of many forms is created using a TAB control on the
form
'and setting the "tab sytle" property to "None". THIS IS
IMPORTANT.
'The only way to edit the other pages of the tab control is to
'set the tab property to "Tabs" when the form is in design
view
'and then change it back to "None" when finished. If you
don't
'do this, you cannot edit any of the pages of the wizard except
'the first one.
'
'After a mishap is added, the 1-0-0-2-frm-EditMishap form is
'opened with the newly added Mishap selected for editing.
This
'allows the user to immediately add Factors without having to
'go back to the main menu.
'
'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance
' - 1-0-0-2-frm-EditMishap
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdBack_Click()
'
'Description: Switches form focus back one tab in the tab
view
'control.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdBack_Click()

 Me.cmdFinish.Enabled = False
 DoCmd.GoToControl "Page1"

 Me.cmdBack.Enabled = False
 Me.cmdNext.Enabled = True

End Sub

'===
'Function/Sub Name: cmdCancel_Click()
'
'Description: Closes the form undoing changes.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdCancel_Click()

On Error GoTo Err_CmdCancel_Click

 DoCmd.DoMenuItem acFormBar, acEditMenu, acUndo, ,
acMenuVer70
 Forms![1-0-0-0-frm-SelectMishap].Visible = True
 DoCmd.Close

Exit_CmdCancel_Click:
 Exit Sub

Err_CmdCancel_Click:
 DoCmd.Close

End Sub

'===
'Function/Sub Name: cmdBack_Click()
'
'Description: Switches form focus forward one tab in the tab
view
'control.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdNext_Click()

 Me.cmdFinish.Enabled = True
 Me.cmdBack.Enabled = True
 DoCmd.GoToControl "Page2"
 Me.cmdNext.Enabled = False

End Sub

'===
'Function/Sub Name: cmdFinish_Click()

 192

'
'Description: Adds t he mishap to the database and opens the
edit
'form so that the user can add factors.
'
'Input: None
'
'Output: None
'
'References:
' - 1-0-0-2-frm-EditMishap
'
'===
Private Sub cmdFinish_Click()

 On Error GoTo startError

 'Set the database type from the global variable
 Me.txtDatabaseType.Value =
GlobalDeclarations.gStrTypeDB

 'If there is a problem, make it "M" as a default
 If Me.txtDatabaseType.Value <> "M" Or
Me.txtDatabaseType.Value <> "C" Then
 Me.txtDatabaseType.Value = "M"
 End If

 'Save the record
 DoCmd.DoMenuItem acFormBar, acRecordsMenu,
acSaveRecord, , acMenuVer70

 'Note: There was no way to capture the new MishapID
created by the line
 'above, so when the Edit form is opened, it just goes to the
last mishap.

 Me.Visible = False 'Make the form invisible so there is no
screen flickering
 Me.Refresh 'Refresh so the changes takes

 'Open the new Project in the Edit Form so the user can add
factors
 GlobalDeclarations.gBlnAddAMishap = True
 GlobalDeclarations.gFormNeedsRefresh = True

 DoCmd.OpenForm "1-0-0-2-frm-EditMishap"

exitSub:
 Exit Sub

startError:
 DoCmd.Beep
 MsgBox "You have left at least one field in this wizard
blank. All entries are mandatory. Please go back and input
data for all fields.", vbOKOnly, "All Entries Are Mandatory"
 Resume exitSub

End Sub

'===
'Function/Sub Name: cmdCodeMaintenance_Click()
'
'Description: Opens the code maintenance form.
'
'Input: None
'
'Output: None

'
'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance
'
'===
Private Sub cmdCodeMaintenance_Click()
 DoCmd.OpenForm "1-0-0-7-PopUpFrm-
CodeMaintenance"
End Sub

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()
 Application.CommandBars("mnuOther").Visible = True
End Sub

'===
'Function/Sub Name: Form_Deactivate()
'
'Description: Updates the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Deactivate()
 Application.CommandBars("mnuOther").Visible = False
End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "1-0-0-5-frm-AddMishap"
End Sub

Private Sub Form_Open(Cancel As Integer)
 Application.CommandBars("mnuOther").Visible = True
End Sub

 193

Private Sub txtDate_GotFocus()
 'Format the date in the textbox so the time doesn't appear
 Me.txtDate = Format([txtDate], "Medium Date")
End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None

'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 194

FORMCLASS-1-0-0-6-PopUpFrm-AdministratorLogon

Option Compare Database
Option Explicit

'Reusable variable for opening a connection
Dim conn As New ADODB.Connection

'Reusable variable for recordset operations
Dim rst As New ADODB.Recordset

'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-6-PopUpFrm-AdministatorLogon
'
'Author: Pat Flanders & Scott Tufts
'
'This class controls access to the Administrator functions of
the
'database. It provides a user logon and compares the User ID
'and password that are input to values retrieved from a hidden
'passord table in the investigate.mdb database. It the User ID
'and password match, then the 1-0-0-0-frm-SelectMishap
form
'is opened.
'
'NOTE: The investigate.mdb database is not encrypted and
should
'be replaced with more secure means of validation such as a
key
'server in future versions of this program.
'
'References:
' - Investigate.mdb
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cboUser_AfterUpdate()
'
'Description: Populates the User combo box.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cboUser_AfterUpdate()

 rst.MoveFirst
 Do Until rst.EOF
 If rst!UID = Me.cboUser.Value Then

 Exit Sub
 End If
 rst.MoveNext
 Loop
 Me.txtPassword.Value = ""

End Sub

'===
'Function/Sub Name: cmdCancel_Click()
'
'Description: Closes the form undoing changes.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdCancel_Click()

 DoCmd.Close acForm, "1-0-0-6-PopUpFrm-
AdministatorLogon"

End Sub

'===
'Function/Sub Name: cmdOK_Click()
'
'Description: Calls the function to check the password/User
combination'
'If successful, sets the global flag so the user doesn't have to
keep
'logging on every time he/she wants to access administrative
functions.
'
'Input: None
'
'Output: None
'
'References:
' - Globaldeclarations
' - chkPassword()
'
'===
Private Sub cmdOK_Click()

 'Check to see if the user left the pasword box blank
 If Trim(Me.txtPassword.Value) = "" Then Exit Sub

 'Call the check password subroutine. If successful, set the
global
 'flag so the user doesn't have to keep loggin on every time
he/she
 'wants to access administrative functions.
 If chkPassword(Me.cboUser.Value,
Me.txtPassword.Value) = True Then
 MsgBox "Login successful." & Chr(13) & Chr(13) &
"You will not be required to log in again this session.",
vbInformation + vbOKOnly, "Login Successful"
 Me.Visible = False

 195

 DoEvents
 DoCmd.OpenForm "1-0-0-0-frm-SelectMishap"
 Else
 MsgBox "Invalid password.", vbExclamation +
vbOKOnly, "Login Denied"
 End If

 DoCmd.Close acForm, "1-0-0-6-PopUpFrm-
AdministatorLogon"

End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Close()

 'Clean up
 rst.Close
 conn.Close

End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()

 'Dynamically resize the form based on screen resolution.
 ezSizeForm Me, -1
 MoveToCenter "1-0-0-6-PopUpFrm-
AdministatorLogon"

End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: Get the user list and passwords from the
Investigate.mdb
'file and populate the user combobox with entries.
'
'Input: None
'

'Output: None
'
'References:
' - Investigate.mdb
'
'===
Private Sub Form_Open(Cancel As Integer)

 'Set the provider name
 conn.Provider = "Microsoft.Jet.OLEDB.4.0"

 'Open a connection to the data
 conn.Open GlobalDeclarations.gStrAppPath &
"Investigate.mdb"

 'Open a recordset with a keyset cursor
 rst.Open "SELECT * FROM tblPasswordFile", conn,
adOpenDynamic, adLockOptimistic, adCmdText

 Dim sValueList As String
 'Walk the recordset creating a list for the combobox to use.
 Do Until rst.EOF
 sValueList = rst!UID & ";" & sValueList
 rst.MoveNext
 Loop

 'Populate the combobox.
 Me.cboUser.RowSource = sValueList
 rst.MoveFirst
 Me.cboUser.Value = rst!UID
 Me.txtPassword.Value = ""

End Sub

'===
'Function/Sub Name: chkPassword(
'
'Description: Checks the User/Password combination for
validity.
'
'Input:
' - strUID User Name as String
' - strPWD User password as string
'
'Output: Success or failure.
'
'References:
' - Investigate.mdb
'
'===
Private Function chkPassword(strUID As String, strPWD As
String) As Boolean

 rst.MoveFirst

 'Walk the recordset if a userID/Password combination
match is
 'found, return success.
 Do Until rst.EOF

 If rst!UID = Trim(strUID) And rst!PWD =
Trim(strPWD) Then
 GlobalDeclarations.gBlnAdministrator = True
 chkPassword = True
 Exit Do
 Else
 GlobalDeclarations.gBlnAdministrator = False

 196

 chkPassword = False
 End If

 rst.MoveNext

 Loop

End Function

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'

'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 197

FORMCLASS-1-0-0-7-PopUpFrm-CodeMaintenance

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-7-PopUpFrm-CodeMaintenance
'
'Author: Pat Flanders & Scott Tufts
'
'Allows an Administrator to add codes directly to the datbase
code
'lookup tables.
'
'References:
' - tblAircraft
' - tblMishapClass
' - tblMishapLocation
' - tblOrganization
' - tblmishaptype
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdClose_Click()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdClose_Click()
 DoCmd.Close acForm, "1-0-0-7-PopUpFrm-
CodeMaintenance"
End Sub

'===
'Function/Sub Name: cmdOK_Click()
'
'Description: Opens the appropriate table for direct editing
based
'on the radio button selection in the frame.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdOK_Click()

 If Me.Frame6 = 1 Then
 DoCmd.OpenTable "dbo.tblAircraft", acViewNormal,
acEdit
 End If

 If Me.Frame6 = 2 Then
 DoCmd.OpenTable "dbo.tblMishapClass",
acViewNormal, acEdit
 End If

 If Me.Frame6 = 3 Then
 DoCmd.OpenTable "dbo.tblMishapLocation",
acViewNormal, acEdit
 End If

 If Me.Frame6 = 4 Then
 DoCmd.OpenTable "dbo.tblOrganization",
acViewNormal, acEdit
 End If

 If Me.Frame6 = 5 Then
 DoCmd.OpenTable "dbo.tblmishaptype",
acViewNormal, acEdit
 End If

End Sub

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()
 'Change the menus when the form is activated (uncovered)
 Application.CommandBars("mnuOther").Visible = True
 Application.CommandBars("FindSortExport").Visible =
False
End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Close()
 'Change the menus when the form is activated (uncovered)
 Application.CommandBars("mnuOther").Visible = True

 198

 Application.CommandBars("FindSortExport").Visible =
False
End Sub

'===
'Function/Sub Name: Form_Deactivate()
'
'Description: Updates the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Deactivate()

 'Change the menus when the form is covered up
(deactivated)
 Application.CommandBars("mnuOther").Visible = False
 Application.CommandBars("FindSortExport").Visible =
True

End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm

'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "1-0-0-7-PopUpFrm-CodeMaintenance"
End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 199

FORMCLASS-1-0-0-8-PopUpFrm-PasswordMaintenance

Option Compare Database
Option Explicit

'Reusable variable for opening a connection
Dim conn As New ADODB.Connection

'Reusable variable for recordset operations
Dim rst As New ADODB.Recordset

'Flag for differentiating new entries from edits
Dim bNewOrEdit As Boolean

'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-8-PopUpFrm-PasswordMaint
'
'Author: Pat Flanders & Scott Tufts
'
'This class controls access to the Administrator functions of
the
'of the password table in the Investigate.mdb database. The
table
'is HIDDEN and cannot be viewed directly. This class
allows addition,
'deletion, and editing of passwords and user IDs in THAT
database.
'
'NOTE: The Investigate.mdb database is not encrypted and
should
'be replaced with more secure means of validation such as a
key
'server in future versions of this program.
'
'References:
' - Investigate.mdb
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cboUser_AfterUpdate()
'
'Description: Populates the User combo box.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cboUser_AfterUpdate()

 rst.MoveFirst
 Do Until rst.EOF
 If rst!UID = Me.cboUser.Value Then
 Me.txtClearPWD.Value = rst!PWD
 Exit Sub
 End If
 rst.MoveNext
 Loop

End Sub

'===
'Function/Sub Name: cmdCancel_Click()
'
'Description: Closes the form undoing changes.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdCancel_Click()

 rst.CancelUpdate
 DoCmd.Close acForm, "1-0-0-8-PopUpFrm-
PasswordMaint"

End Sub

'===
'Function/Sub Name: cmdDelete_Click()
'
'Description: Deletes the selected user from the password
table.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdDelete_Click()

 Dim response As Variant
 response = MsgBox("Ary you sure you want to delete the
HFACS Administration account for " & Me.cboUser.Value
& "?", vbYesNo + vbQuestion, "Delete Admin Account")
 If response = vbYes Then
 rst.Delete
 DoCmd.Close acForm, "1-0-0-8-PopUpFrm-
PasswordMaint"
 End If

End Sub

'===
'Function/Sub Name: cmdNew_Click()
'

 200

'Description: Adds a new user to the password table.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdNew_Click()

 Me.cboUser.Visible = False
 Me.txtUser.Visible = True
 Me.txtClearPWD = ""
 Me.txtPassword.Value = ""
 Me.txtConfirm.Value = ""
 Me.cmdDelete.Enabled = False
 rst.AddNew
 bNewOrEdit = True
 Me.txtUser.SetFocus

End Sub

'===
'Function/Sub Name: cmdSave_Click()
'
'Description: Validates entries and saves changes.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdSave_Click()

 On Error GoTo startError

 'Make sure password and password confirmation match.
 If Trim(Me.txtPassword.Value) =
Trim(Me.txtConfirm.Value) Then

 Select Case bNewOrEdit

 Case True 'This is a new entry, so make sure both User
& Password are specified.

 If Trim(Me.txtUser.Value) = "" Or
Trim(Me.txtPassword.Value) = "" Then
 MsgBox "You can't leave the USER or
PASSWORD fields blank.", vbOKOnly + vbExclamation,
"Missing Data"
 Exit Sub
 End If

 DoCmd.SetWarnings (False)
 rst!UID = Me.txtUser.Value
 rst!PWD = Me.txtPassword.Value
 rst.Update
 DoCmd.SetWarnings (True)

 Case False 'This is an edit, so make sure the password is
specified.

 If Trim(Me.txtPassword.Value) = "" Then

 MsgBox "You can't leave the PASSWORD field
blank.", vbOKOnly + vbExclamation, "Missing Data"
 Exit Sub
 End If

 'Update the database with the changes.
 DoCmd.SetWarnings (False)
 rst!UID = Me.cboUser.Value
 rst!PWD = Me.txtPassword.Value
 rst.Update
 DoCmd.SetWarnings (True)

 End Select

 DoCmd.Close acForm, "1-0-0-8-PopUpFrm-
PasswordMaint"

 Else
 MsgBox "Your new password and confirmation entries
do not match.", vbOKOnly + vbExclamation, "Passwords
Don't Match"
 Me.txtPassword.Value = ""
 Me.txtConfirm.Value = ""
 End If

exitSub:

 Exit Sub

startError:
 MsgBox ERR.Description & "Number: " & ERR.Number
 GoTo exitSub

End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Close()

 'Clean up
 rst.Close
 conn.Close

End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'

 201

'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "1-0-0-8-PopUpFrm-PasswordMaint"
End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: Get the user list and passwords from the
Investigate.mdb
'file and populate the user combobox with entries.
'
'Input: None
'
'Output: None
'
'References:
' - Investigate.mdb
'
'===
Private Sub Form_Open(Cancel As Integer)

 'Set the provider name
 conn.Provider = "Microsoft.Jet.OLEDB.4.0"

 'Open a connection to the data
 conn.Open GlobalDeclarations.gStrAppPath &
"Investigate.mdb"

 'Open a recordset with a keyset cursor
 rst.Open "SELECT * FROM tblPasswordFile", conn,
adOpenDynamic, adLockOptimistic, adCmdText

 Dim sValueList As String
 'Walk the recordset
 Do Until rst.EOF
 sValueList = rst!UID & ";" & sValueList
 rst.MoveNext
 Loop

 Me.cboUser.RowSource = sValueList

 rst.MoveFirst
 Me.cboUser.Value = rst!UID
 Me.txtClearPWD.Value = rst!PWD
 Me.txtPassword.Value = ""
 Me.txtConfirm.Value = ""

End Sub

'===
'Function/Sub Name: txtUser_GotFocus()
'
'Description: Disable the "New" button once it has been
clicked.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub txtUser_GotFocus()

 Me.cmdNew.Enabled = False

End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 202

FORMCLASS-2-0-1-0-frm-QueryMenu

Option Compare Database
Option Explicit

'###
' FORM DESCRIPTION
'###
'Class Name: 2-0-1-0-frm-QueryMenu
'
'Author: Pat Flanders & Scott Tufts
'
'This class is the form for selecting the type of query to run.
'It has no special functionality or recordsource.
'
'References:
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
' - 2-0-1-1-frm-ExpertQueryForm
' - 2-0-2-1-frm-Summary
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdCloseQueryMenu_Click()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdCloseQueryMenu_Click()
 DoCmd.Close acForm, "2-0-1-0-frm-QueryMenu"
End Sub

'===
'Function/Sub Name:
' - cmdCloseQueryMenu_MouseMove()
' - cmdExpertQuery_MouseMove()
' - cmdHFACS_MESummary_MouseMove()
'
'Description: The following 3 functions update text color on
the
'command buttons in response to mouse over events.
'
'Input: None
'
'Output: None
'
'References: None
'

'===
=========================
Private Sub cmdCloseQueryMenu_MouseMove(Button As
Integer, Shift As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdExpertQuery.ForeColor = QBColor(0)
 Me.cmdHFACS_MESummary.ForeColor = QBColor(0)
 Me.cmdCloseQueryMenu.ForeColor = QBColor(9)
End Sub

Private Sub cmdExpertQuery_MouseMove(Button As
Integer, Shift As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdExpertQuery.ForeColor = QBColor(9)
 Me.cmdHFACS_MESummary.ForeColor = QBColor(0)
 Me.cmdCloseQueryMenu.ForeColor = QBColor(0)
End Sub

Private Sub cmdHFACS_MESummary_MouseMove(Button
As Integer, Shift As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdExpertQuery.ForeColor = QBColor(0)
 Me.cmdHFACS_MESummary.ForeColor = QBColor(9)
 Me.cmdCloseQueryMenu.ForeColor = QBColor(0)
End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Close()

 Application.CommandBars("mnuOther").Visible = False
 Application.CommandBars("mnuProgramMain").Visible =
True
 Forms![MainMenu].Visible = True

End Sub

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()
 Application.CommandBars("mnuOther").Visible = True
End Sub

 203

'===
'Function/Sub Name: Form_Deactivate()
'
'Description: Updates the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Deactivate()
 Application.CommandBars("mnuOther").Visible = False
End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()

 ezSizeForm Me, -1
 MoveToCenter "2-0-1-0-frm-QueryMenu"

End Sub

'===
'Function/Sub Name: Form_Open
'
'Description: Updates the menu bar and sets the focus to the
first
'command button, setting its color to blue.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Open(Cancel As Integer)

 Forms![MainMenu].Visible = False
 Application.CommandBars("mnuOther").Visible = True

 Me.cmdCloseQueryMenu.SetFocus

 ' Make the button text blue when it gets the focus
 Me.cmdExpertQuery.ForeColor = QBColor(0)
 Me.cmdHFACS_MESummary.ForeColor = QBColor(0)
 Me.cmdCloseQueryMenu.ForeColor = QBColor(0)

End Sub

'===
'Function/Sub Name: cmdHFACS_MESummary_Click()
'
'Descriptio n: Opens the 2-0-2-1-frm-Summary form.
'
'Input: None
'
'Output: None
'
'References:
' - 7-0-0-1-PopUpFrm-waitProgressBar
'
'===
Private Sub cmdHFACS_MESummary_Click()

 DoCmd.OpenForm "7-0-0-1-PopUpFrm-
waitProgressBar", acNormal, "", "", acReadOnly, acNormal
 DoCmd.RepaintObject acForm, "7-0-0-1-PopUpFrm-
waitProgressBar"
 DoCmd.OpenForm "2-0-2-1-frm-Summary"
 DoCmd.Close acForm, "7-0-0-1-PopUpFrm-
waitProgressBar"

End Sub

'===
'Function/Sub Name: cmdExpertQuery_Click()
'
'Description: Opens the 2-0-1-1-frm-ExpertQueryForm
form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdExpertQuery_Click()

 DoCmd.OpenForm "2-0-1-1-frm-ExpertQueryForm"

End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow

 204

'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd

 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 205

FORMCLASS-2-0-1-1-frm-ExpertQueryForm

Option Compare Database
Option Explicit

'Reusable variable for creating combobox value lists
Dim tempvaluelist As String

'###
' FORM DESCRIPTION
'###
'Class Name: 2-0-1-1-frm-ExpertQueryForm
'
'Author: Pat Flanders & Scott Tufts
'
'This form allows the user to choose multiple criteria from a
series of
'combo boxes and then query the database to open the
'2-0-1-2-frm-ViewMishaps form and display the mishaps and
factors.
'
'When the form opens, it populates the combo boxes by
running UNION
'queries to build the recordsets needed to serve as control
sources.
'This is necessary to add the "<All>" choice. The only
exception
'is the "Year" combo box. It uses a string manipulation
function
'called populateComboBoxWithAll() to build a value list.
This
'is necessary because the UNION method will only work
with non-integer
'data types. The problem with the
populateComboBoxWithAll()
'method is that it is limited in size to about 50 two
dimensional
'entries. In addition, commas and semi-colons create
problems
'and must be removed from the string during build.
'
'Finally, when the user clicks "View", code is executed that
builds
'the input string for stored procedure 2-0-1-1-
flanCountflanFilteredMishaps
'which is the recordsource for the 2-0-1-2-frm-ViewMishaps
form.
'this input string is then passed to the "view" form via a
global
'variable and the viewMishaps form is opened.
'
'References:
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
' - 2-0-1-2-frm-ViewMishaps
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()

 Application.CommandBars("mnuOther").Visible = True

End Sub

'===
'Function/Sub Name: Form_Deactivate()
'
'Description: Updates the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Deactivate()
 Application.CommandBars("mnuOther").Visible = False
End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Updates the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Close()
 Application.CommandBars("mnuOther").Visible = False
End Sub

'===
'Function/Sub Name: cmdBack_Click()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===

 206

Private Sub cmdBack_Click()
 DoCmd.Close acForm, "2-0-1-1-frm-ExpertQueryForm"
End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()

 ezSizeForm Me, -1
 MoveToCenter "2-0-1-1-frm-ExpertQueryForm"

End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: Populates combo boxes. In order to allow the
combo
'boxes to offer <All> as a choice, 2 methods are
'needed -- one for integers and another for strings.

'The populateComboBoxWillAll() subroutine is used for
integers (like the Mishap
'Year), while stored procedures are used for strings.

'Important to note that the populateComboBoxWillAll() will
not work for
'creating strings of more than about 50 entries because the
combo box
'rejects them as too, long. Stored procedures, however, do
not suffer
'from this limitation.
'
'Input: None
'
'Output: None
'
'References:
' - populateComboBoxWithAll()
'
'===
Private Sub Form_Open(Cancel As Integer)

 Application.CommandBars("mnuOther").Visible = True

 'Populate each combo box
 'Aircraft
 With Me.cboAircraft
 .RowSource = "9-0-0-2-flanLookupAircraftAll"
 .Value = "<All>"
 End With

 'Organization

 With Me.cboOrganization
 .RowSource = "9-0-0-2-flanLookupOrganizationAll"
 .Value = "<All>"
 End With

 'Location
 With Me.cboLocation
 .RowSource = "9-0-0-2-flanLookupLocationAll"
 .Value = "<All>"
 End With

 'Class category
 With Me.cboClass
 .RowSource = "9-0-0-2-flanLookupClassAll"
 .Value = "<All>"
 End With

 'Type category
 With Me.cboType
 .RowSource = "9-0-0-2-flanLookupTypeAll"
 .Value = "<All>"
 End With

 'Year (can't use UNION stored procedure to append <All>
because it is of type Integer)
 populateComboBoxWithAll "9-0-0-2-
flanModifiedLookupYear", 1
 With Me.cboYear
 .RowSourceType = "Value List"
 .RowSource = tempvaluelist
 .Value = "<All>"
 End With

End Sub

'===
'Function/Sub Name: cmdView_Click()
'
'Description: Builds the input string to pass to the stored
procedure
'to get the correct records. Order of these if statements must
match the SP.
'If <All> was selected, then pass '' so that the SP knows the
value is NULL.

'Once the input string is built, a stored procedure is run from
wihin
'this function to determine if there are actually any records in
the
'database matching the users selections. If no records match,
ane error
'message is displayed. Otherwise the 2-0-1-2-frm-
ViewMishaps form
'is opened.
'
'Input: None
'
'Output: None
'
'References:
' - 2-0-1-2-frm-ViewMishaps
' - gStrInputString
'
'===
Private Sub cmdView_Click()

 On Error GoTo Err_cmdView_Click

 207

 'Reset the global variable
 GlobalDeclarations.gStrInputString = ""

 'Build the input string to pass to the stored procedure to get
the correct records.
 'Order of these if statements must match the SP.
 'If <All> was selected, then pass '' so that the SP knows the
value is NULL.
 If Me.cboAircraft.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString = "@AC
varchar(10)='" & Me.cboAircraft.Value & "'"
 Else
 GlobalDeclarations.gStrInputString = "@AC
varchar(10)=''"
 End If

 If Me.cboType.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Type
varchar(3)='" & Me.cboType.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Type
varchar(3)=''"
 End If

 If Me.cboClass.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Class
varchar(1)='" & Me.cboClass.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Class
varchar(1)=''"
 End If

 If Me.cboLocation.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Loc
varchar(25)='" & Me.cboLocation.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Loc
varchar(25)=''"
 End If

 If Me.cboOrganization.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Svc
varchar(10)='" & Me.cboOrganization.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Svc
varchar(10)=''"
 End If

 If Me.cboYear.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Yr int='" &
Me.cboYear.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Yr int=''"
 End If

 'These 3 paramaters are required for the SP to run (because
the HFACS summary form uses the same SP), but remain
NULL
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @1stLevel
varchar(5)=''"
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @2ndLevel
varchar(5)=''"
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @3rdLevel
varchar(5)=''"

 'Run a stored procedure to determine if there are actually
any records in the database matching the
 'users selections.
 Dim cnn As Connection
 Dim oCmd As ADODB.Command
 Dim rst As ADODB.Recordset

 Dim objPrmAC As ADODB.Parameter
 Dim objPrmSvc As ADODB.Parameter
 Dim objPrmType As ADODB.Parameter
 Dim objPrmClass As ADODB.Parameter
 Dim objPrmLoc As ADODB.Parameter
 Dim objPrmYr As ADODB.Parameter

 Set cnn = CurrentProject.Connection
 cnn.CursorLocation = adUseClient
 Set rst = New ADODB.Recordset
 Set oCmd = New ADODB.Command
 oCmd.ActiveConnection = cnn
 oCmd.CommandText = """2-0-1-1-
flanCountflanFilteredMishaps"""
 oCmd.CommandType = adCmdStoredProc

 'Create parameters for the SP that correspond to the combo
boxes.
 'They have to be appended in the same order that they
appear in
 'the stored procedure.

 Set objPrmAC = oCmd.CreateParameter("@AC",
adVarChar, adParamInput, 10)
 oCmd.Parameters.Append objPrmAC
 If Me.cboAircraft.Value <> "<All>" Then
 objPrmAC.Value = Me.cboAircraft.Value
 End If

 Set objPrmType = oCmd.CreateParameter("@Type",
adVarChar, adParamInput, 3)
 oCmd.Parameters.Append objPrmType
 If Me.cboType.Value <> "<All>" Then
 objPrmType.Value = Me.cboType.Value
 End If

 Set objPrmClass = oCmd.CreateParameter("@Class",
adVarChar, adParamInput, 1)
 oCmd.Parameters.Append objPrmClass
 If Me.cboClass.Value <> "<All>" Then
 objPrmClass.Value = Me.cboClass.Value
 End If

 Set objPrmLoc = oCmd.CreateParameter("@Loc",
adVarChar, adParamInput, 25)
 oCmd.Parameters.Append objPrmLoc
 If Me.cboLocation.Value <> "<All>" Then

 208

 objPrmLoc.Value = Me.cboLocation.Value
 End If

 Set objPrmSvc = oCmd.CreateParameter("@Svc",
adVarChar, adParamInput, 10)
 oCmd.Parameters.Append objPrmSvc
 If Me.cboOrganization.Value <> "<All>" Then
 objPrmSvc.Value = Me.cboOrganization.Value
 End If

 Set objPrmYr = oCmd.CreateParameter("@Yr", adInteger,
adParamInput)
 oCmd.Parameters.Append objPrmYr
 If Me.cboYear.Value <> "<All>" Then
 objPrmYr.Value = Me.cboYear.Value
 End If

 'These 3 paramaters are required for the SP to run (because
the HFACS summary form uses the same SP), but remain
NULL
 Set objPrmSvc = oCmd.CreateParameter("@1stLevel",
adVarChar, adParamInput, 10)
 oCmd.Parameters.Append objPrmSvc
 Set objPrmSvc = oCmd.CreateParameter("@2ndLevel",
adVarChar, adParamInput, 10)
 oCmd.Parameters.Append objPrmSvc
 Set objPrmSvc = oCmd.CreateParameter("3rdLevel",
adVarChar, adParamInput, 10)
 oCmd.Parameters.Append objPrmSvc

 'Run the SP
 Set rst = oCmd.Execute

 'Get the record count
 rst.MoveFirst
 Dim tempRecordCount As Integer
 tempRecordCount = rst!NumRecords

 'Clean up
 rst.Close
 Set oCmd = Nothing
 cnn.Close

 'If there really are records, then open them up, otherwise,
tell
 'the user that no records matched his search criteria.
 If tempRecordCount > 0 Then
 DoCmd.OpenForm "2-0-1-2-frm-ViewMishaps"
 Else
 MsgBox "There are no records that match your search
criteria.", vbOKOnly + vbInformation, "Criteria Too
Restrictive"
 End If

Exit_cmdView_Click:
 Exit Sub

Err_cmdView_Click:
 MsgBox ERR.Description
 Resume Exit_cmdView_Click

End Sub

'===
'Function/Sub Name: populateComboBoxWithAll()
'

'Description: Makes a connection to the stored procedure
passed-in
'and builds an string that can be used by a combo box to
dislay
'and "iNumberColToGet" column drop down list. It has to
check
'every record for commas and semi-colons in the data
because these
'two characters are interpreted by the combo box as
delimiters,
'so they must be replaced with some other character (a "-" is
what
'I'm using here).
'
'Input:
' sNameOfSP - Name of the Stored Procedure to
get
' the records from.
'
' iNumberColToGet - Number of columns of data to
read
' from the Stored Procedure.
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Private Sub populateComboBoxWithAll(sNameOfSP As
String, iNumberColToGet As Integer)

 'STEP 1 - Make a connection and get a recordset matching
the passed in parameters
 Dim cnn As Connection
 Dim oCmd As ADODB.Command
 Dim rst As ADODB.Recordset
 Set cnn = CurrentProject.Connection
 cnn.CursorLocation = adUseClient
 Set rst = New ADODB.Recordset
 Set oCmd = New ADODB.Command
 oCmd.ActiveConnection = cnn
 oCmd.CommandText = """" & sNameOfSP & """"
 oCmd.CommandType = adCmdStoredProc
 Set rst = oCmd.Execute

 'Make sure tempvalue list is empty before adding to it.
 tempvaluelist = ""

 'STEP 2 - Build a string of all the values starting with
choice <All>.
 Dim i As Integer
 i = 0
 For i = 0 To (iNumberColToGet - 1)
 tempvaluelist = "<All>;" & tempvaluelist 'Add <All>
 Next

 'Now add the real values
 rst.MoveFirst
 Do Until rst.EOF
 Dim k As Integer
 k = 0
 While k < iNumberColToGet

 'STEP 3 - Replace commas and semicolons with
dashes becuase the mess up the list
 Dim astrText As String
 Dim iCount As Integer

 209

 'Check for null fields and only operate on those that
are not null
 If IsNull(rst.Fields(k)) Then
 tempvaluelist = tempvaluelist & rst.Fields(k) & ";"
 Else
 astrText = Trim(rst.Fields(k))

 ' Loop through array, replacing commas and
semicolons
 For iCount = 1 To Len(astrText)

 If Mid(astrText, iCount, 1) = "," Or
Mid(astrText, iCount, 1) = ";" Then
 ' If array element satisfies wildcard search,
 ' replace it.
 Mid(astrText, iCount, 1) = "-"
 End If
 Next
 ' Join string.
 tempvaluelist = tempvaluelist & astrText & ";"
 End If
 k = k + 1
 Wend
 rst.MoveNext
 Loop

 rst.Close
 Set rst = Nothing
 Set oCmd = Nothing
 cnn.Close

End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 210

FORMCLASS-2-0-1-2-frm-ViewMishaps

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 2-0-1-2-frm-ViewMishaps
'
'Author: Pat Flanders & Scott Tufts
'
'This class is used to view the mishaps with factors. It does
'NOT allow input, edit, or deletion of data. It is called by
'both the 2-0-1-1-frm-ExpertQueryForm and the 2-0-2-1-frm-
Summary
'form.
'
'Becuase it is called by two different forms, it has the
capability
'to determine which stored procedure to use as a record
source
'based on the value of the
GlobalDeclarations.bUseHFACSSummaryQuery
'global variable.
'
'References:
' - 2-0-1-2-subFrm-ViewMishaps
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdCancel_Click()
'
'Description: Saves the state of the data (and size of the
form)
'and closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdCancel_Click()

On Error GoTo Err_CmdCancel_Click

 DoCmd.DoMenuItem acFormBar, acEditMenu, acUndo, ,
acMenuVer70
 DoCmd.Close

Exit_CmdCancel_Click:
 Exit Sub

Err_CmdCancel_Click:
 DoCmd.Close

End Sub

'===
'Function/Sub Name: cmdSave_Click()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdDone_Click()

 DoCmd.Close acForm, "2-0-1-2-frm-ViewMishaps"

End Sub

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()
 Application.CommandBars("mnuOther").Visible = True
End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Resets the flag used to tell the form which
stored
'procedure to use for a record source.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Close()
 GlobalDeclarations.bUseHFACSSummaryQuery = False
End Sub

'===
'Function/Sub Name: Form_Deactivate()
'

 211

'Description: Updates the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Deactivate()
 Application.CommandBars("mnuOther").Visible = False
End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "2-0-1-2-frm-ViewMishaps"
End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: Determines which stored procedure to use as a
record source
'based on the value of the
GlobalDeclarations.bUseHFACSSummaryQuery
'global variable.
'
'Input: None
'
'Output: None
'
'References:
' - GlobalDeclarations
'
'===
Private Sub Form_Open(Cancel As Integer)

 Application.CommandBars("mnuOther").Visible = True

 'Determine which stored procedure to use as a record
source.
 If GlobalDeclarations.bUseHFACSSummaryQuery = True
Then
 'This form was called from the 2-0-2-1-frm-Summary
form.
 Me.RecordSource = "dbo.2-0-2-1-
flanSummaryGetRecords"
 Else
 'This form was called from the 2-0-1-1-frm-
ExpertQueryForm form.

 Me.RecordSource = "dbo.2-0-1-1-
flanFilteredMishapTable"
 End If

 'Set the unique t able for the underlying stored procedure
with code
 'becuase it sometimes dissapears when using the visual
property sheet.
 Me.UniqueTable = "tblMishaps"

 'Set the inputparameters for opening the form
 Me.InputParameters = GlobalDeclarations.gStrInputString

End Sub

'===
'Function/Sub Name: cmdPreview_Click()
'
'Description: Opens a report.
'
'Input: None
'
'Output: None
'
'References:
' - 1-0-MishapSnapshot-OpenMishaps
'
'===
Private Sub cmdPreview_Click()

 GlobalDeclarations.gLngMishapToGet = Me.txtMishapID

 On Error GoTo startError

 DoCmd.OpenReport "1-1-MishapSnapShot",
acViewPreview

exitSub:

Exit Sub

startError:

 MsgBox "You must have a default printer installed in
order to preview reports.", vbCritical + vbOKOnly, "Can't
Find A Printer"

End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None

 212

'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 213

FORMCLASS-2-0-2-1-frm-Summary

Option Compare Database
Option Explicit

'Reusable variable for creating combobox value lists
Dim tempvaluelist As String

'Used to track if combo boxes have been changed, but no
update has been performed.
Dim bUpdateNeeded As Boolean

'Variables for storing initial values.
'Used for tracking if the user actually changed something.
Dim sStoredAircraft As String
Dim sStoredType As String
Dim sStoredClass As String
Dim sStoredLocation As String
Dim sStoredOrganization As String
Dim vStoredYear As Variant
Dim sStored1stLevel As String
Dim sStored2ndLevel As String
Dim sStored3rdLevel As String

'###
' FORM DESCRIPTION
'###
'Class Name: 2-0-2-1-frm-Summary
'
'Author: Pat Flanders & Scott Tufts
'
'This class is used to dipict the table of factor vs. mishap
counts
'and percentages. It allows the user to select criteria from
combo
'boxes and fills then calculates the values for the table when
the
'user clicks update.
'
'When the form opens, it populates the combo boxes by
running UNION
'queries to build the recordsets needed to serve as control
sources.
'This is necessary to add the "<All>" choice. The only
exception
'is the "Year" combo box. It uses a string manipulation
function
'called populateComboBoxWithAll() to build a value list.
This
'is necessary because the UNION method will only work
with non-integer
'data types. The problem with the
populateComboBoxWithAll()
'method is that it is limited in size to about 50 two
dimensional
'entries. In addition, commas and semi-colons create
problems
'and must be removed from the string during build.
'
'Finally, when the user clicks double clicks a label in the
table,
'code is executed that builds the input string for stored
procedure
'2-0-1-1-flanCountflanFilteredMishaps
'which is the recordsource for the 2-0-1-2-frm-ViewMishaps
form.

'this input string is then passed to the "view" form via a
global
'variable and the viewMishaps form is opened.
'
'References:
' - 2-0-1-2-Frm-ViewMishaps
' - clFo rmWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name:
' - cboAircraft_Change()
' ... thru ...
' - cboYear_Change()
'
'Description: The next 9 subroutines are used to mark the
'form as dirty (needing an update).Saves the state of the
'data (and size of the form)
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cboAircraft_Change()
 bUpdateNeeded = True
End Sub

Private Sub cboClass_Change()
 bUpdateNeeded = True
End Sub

Private Sub cboFactors1_Change()
 bUpdateNeeded = True
End Sub

Private Sub cboFactors2_Change()
 bUpdateNeeded = True
End Sub

Private Sub cboFactors3_Change()
 bUpdateNeeded = True
End Sub

Private Sub cboLocation_Change()
 bUpdateNeeded = True
End Sub

Private Sub cboOrganization_Change()
 bUpdateNeeded = True
End Sub

 214

Private Sub cboType_Change()
 bUpdateNeeded = True
End Sub

Private Sub cboYear_Change()
 bUpdateNeeded = True
End Sub

'===
'Function/Sub Name: cmdClose_Click()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdClose_Click()
 DoCmd.Close acForm, "2-0-2-1-frm-Summary"
End Sub

'===
'Function/Sub Name: cmdUpdate_Click()
'
'Description: Updates all data on the form by calling
goGetUpdate().
'
'Input: None
'
'Output: None
'
'References:
' - goGetUpdate()
'
'===
Private Sub cmdUpdate_Click()
 goGetUpdate
End Sub

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()
 Application.CommandBars("mnuOther").Visible = True
End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Closes the form.
'

'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Close()
 Application.CommandBars("mnuOther").Visible = False
End Sub

'===
'Function/Sub Name: Form_Deactivate()
'
'Description: Updates the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Deactivate()
 Application.CommandBars("mnuOther").Visible = False
End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 'Dynamically resize the form based on screen resolution.
 ezSizeForm Me, -1
 MoveToCenter "2-0-2-1-frm-Summary"
End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: Populates combo boxes. In order to allow the
combo
'boxes to offer <All> as a choice, 2 methods are
'needed -- one for integers and another for strings.

'The populateComboBoxWillAll() subroutine is used for
integers (like the Mishap
'Year), while stored procedures are used for strings.

'Important to note that the populateComboBoxWillAll() will
not work for
'creating strings of more than about 50 entries because the
combo box

 215

'rejects them as too, long. Stored procedures, however, do
not suffer
'from this limitation.
'
'Input: None
'
'Output: None
'
'References:
' - populateComboBoxWithAll()
'
'===
Private Sub Form_Open(Cancel As Integer)

 Application.CommandBars("mnuOther").Visible = True

 'Aircraft
 With Me.cboAircraft
 .RowSource = "9-0-0-2-flanLookupAircraftAll"
 .Value = "<All>"
 End With

 'Organization
 With Me.cboOrganization
 .RowSource = "9-0-0-2-flanLookupOrganizationAll"
 .Value = "<All>"
 End With

 'Location
 With Me.cboLocation
 .RowSource = "9-0-0-2-flanLookupLocationAll"
 .Value = "<All>"
 End With

 'Class category
 With Me.cboClass
 .RowSource = "9-0-0-2-flanLookupClassAll"
 .Value = "<All>"
 End With

 'Type category
 With Me.cboType
 .RowSource = "9-0-0-2-flanLookupTypeAll"
 .Value = "<All>"
 End With

 'Year (can't use UNION stored procedure to append <All>
because it is of type Integer)
 populateComboBoxWithAll "9-0-0-2-
flanModifiedLookupYear", 1
 With Me.cboYear
 .RowSourceType = "Value List"
 .RowSource = tempvaluelist
 .Value = "<All>"
 End With

 '3rd Level factors
 With Me.cboFactors3
 .RowSource = "9-0-0-2-flanLookupFactorsAll3Level"
 .Value = "<All>"
 End With

 '2nd Level factors
 With Me.cboFactors2
 .RowSource = "9-0-0-2-flanLookupFactorsAll2Level"
 .Value = "<All>"
 End With

 '1st Level factors
 With Me.cboFactors1
 .RowSource = "9-0-0-2-flanLookupFactorsAll1Level"
 .Value = "<All>"
 End With

 'Reset the update variable (because) the form is not dirty.
 bUpdateNeeded = False
 storeValues 'Store the initial values of the combo boxes.

End Sub

'===
'Function/Sub Name: populateComboBoxWithAll()
'
'Description: Makes a connection to the stored procedure
passed-in
'and builds an string that can be used by a combo box to
dislay
'and "iNumberColToGet" column drop down list. It has to
check
'every record for commas and semi-colons in the data
because these
'two characters are interpreted by the combo box as
delimiters,
'so they must be replaced with some other character (a "-" is
what
'I'm using here).
'
'Input:
' sNameOfSP - Name of the Stored Procedure to
get
' the records from.
'
' iNumberColToGet - Number of columns of data to
read
' from the Stored Procedure.
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Private Sub populateComboBoxWithAll(sNameOfSP As
String, _
 iNumberColToGet As Integer)

 'STEP 1 - Make a connection and get a recordset matching
the
 'passed in parameters
 Dim cnn As Connection
 Dim oCmd As ADODB.Command
 Dim rst As ADODB.Recordset
 Set cnn = CurrentProject.Connection
 cnn.CursorLocation = adUseClient
 Set rst = New ADODB.Recordset
 Set oCmd = New ADODB.Command
 oCmd.ActiveConnection = cnn
 oCmd.CommandText = """" & sNameOfSP & """"
 oCmd.CommandType = adCmdStoredProc
 Set rst = oCmd.Execute

 'Make sure tempvalue list is empty before adding to it.
 tempvaluelist = ""

 216

 'STEP 2 - Build a string of all the values starting with
choice <All>.
 Dim i As Integer
 i = 0
 For i = 0 To (iNumberColToGet - 1)
 tempvaluelist = "<All>;" & tempvaluelist 'Add <All>
 Next

 'Now add the real values
 rst.MoveFirst
 Do Until rst.EOF
 Dim k As Integer
 k = 0
 While k < iNumberColToGet

 'STEP 3 - Replace commas and semicolons with
dashes becuase
 'the mess up the list
 Dim astrText As String
 Dim iCount As Integer
 'Check for null fields and only operate on those that
are not null
 If IsNull(rst.Fields(k)) Then
 tempvaluelist = tempvaluelist & rst.Fields(k) & ";"
 Else
 astrText = Trim(rst.Fields(k))

 ' Loop through array, replacing commas and
semicolons
 For iCount = 1 To Len(astrText)

 If Mid(astrText, iCount, 1) = "," Or
Mid(astrText, iCount, 1) = ";" Then
 ' If array element satisfies wildcard search,
 ' replace it.
 Mid(astrText, iCount, 1) = "-"
 End If
 Next
 ' Join string.
 tempvaluelist = tempvaluelist & astrText & ";"
 End If
 k = k + 1
 Wend
 rst.MoveNext
 Loop

 rst.Close
 Set rst = Nothing
 Set oCmd = Nothing
 cnn.Close

End Sub

'===
'Function/Sub Name: goGetUpdate()
'
'Description: Builds the input string to pass based on the
users
'combo box selection and uses this information to requery
'the underlying recordsource for this form. This updates the
'table to show the counts corresponding to the user's combo
box
'criteria.
'
'Input: None
'
'Output: None

'
'References:
' - gStrInputString
'
'===
Private Sub goGetUpdate()
On Error GoTo Err_goGetUpdate

 'Reset the global variable
 GlobalDeclarations.gStrInputString = ""

 'Build the input string to pass to the stored procedure
 'to get the correct records.
 'Order of these if statements must match the SP.
 'If <All> was selected, then pass '' so that the SP knows the
value is NULL.
 If Me.cboAircraft.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString = "@AC_Type
varchar(10)='" & Me.cboAircraft.Value & "'"
 Else
 GlobalDeclarations.gStrInputString = "@AC_Type
varchar(10)=''"
 End If

 If Me.cboType.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Mishap_Type
varchar(3)='" & Me.cboType.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Mishap_Type
varchar(3)=''"
 End If

 If Me.cboClass.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Mishap_Class
varchar(1)='" & Me.cboClass.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Mishap_Class
varchar(1)=''"
 End If

 If Me.cboLocation.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Location
varchar(25)='" & Me.cboLocation.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Location
varchar(25)=''"
 End If

 If Me.cboOrganization.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Service
varchar(10)='" & Me.cboOrganization.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Service
varchar(10)=''"
 End If

 If Me.cboYear.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Year int='" &
Me.cboYear.Value & "'"

 217

 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Year int=''"
 End If

 If Me.cboFactors1.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarat ions.gStrInputString & ", @1stLevel
varchar(5)='" & Me.cboFactors1.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @1stLevel
varchar(5)=''"
 End If

 If Me.cboFactors2.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @2ndLevel
varchar(5)='" & Me.cboFactors2.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @2ndLevel
varchar(5)=''"
 End If

 If Me.cboFactors3.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @3rdLevel
varchar(5)='" & Me.cboFactors3.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @3rdLevel
varchar(5)=''"
 End If

 Me.InputParameters = GlobalDeclarations.gStrInputString
 Me.Requery 'Update the form.
 bUpdateNeeded = False 'Reset the forms dirty variable.
 storeValues

 If Me.txtMishapTotal = 0 Then
 MsgBox "There are no records that match your search
criteria.", vbOKOnly + vbInformation, "Criteria Too
Restrictive"
 End If

Exit_goGetUpdate:
 Exit Sub

Err_goGetUpdate:
 MsgBox ERR.Description
 Resume Exit_goGetUpdate

End Sub

'===
'Function/Sub Name: goGetRecords()
'
'Description: Builds the input string to pass to the stored
procedure
'to get the correct records. Order of these if statements must
match the SP.
'If <All> was selected, then pass '' so that the SP knows the
value is NULL.

'Once the input string is built, the 2-0-1-2-frm-ViewMishaps
form
'is opened.
'
'Input: None
'
'Output: None
'
'References:
' - 2-0-1-2-frm-ViewMishaps
' - gStrInputString
'
'===
Private Sub goGetRecords()
On Error GoTo Err_goGetRecords

 'Reset the global variable
 GlobalDeclarations.gStrInputString = ""

 'Build the input string to pass to the stored procedure to get
the correct records.
 'Order of these if statements must match the SP.
 'If <All> was selected, then pass '' so that the SP knows the
value is NULL.
 If Me.cboAircraft.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString = "@AC
varchar(10)='" & Me.cboAircraft.Value & "'"
 Else
 GlobalDeclarations.gStrInputString = "@AC
varchar(10)=''"
 End If

 If Me.cboType.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Type
varchar(3)='" & Me.cboType.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Type
varchar(3)=''"
 End If

 If Me.cboClass.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Class
varchar(1)='" & Me.cboClass.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Class
varchar(1)=''"
 End If

 If Me.cboLocation.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Loc
varchar(25)='" & Me.cboLocation.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Loc
varchar(25)=''"
 End If

 If Me.cboOrganization.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Svc
varchar(10)='" & Me.cboOrganization.Value & "'"
 Else

 218

 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Svc
varchar(10)=''"
 End If

 If Me.cboYear.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Yr int='" &
Me.cboYear.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @Yr int=''"
 End If

 If Me.cboFactors1.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @1stLevel
varchar(5)='" & Me.cboFactors1.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @1stLevel
varchar(5)=''"
 End If

 If Me.cboFactors2.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @2ndLevel
varchar(5)='" & Me.cboFactors2.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @2ndLevel
varchar(5)=''"
 End If

 If Me.cboFactors3.Value <> "<All>" Then
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @3rdLevel
varchar(5)='" & Me.cboFactors3.Value & "'"
 Else
 GlobalDeclarations.gStrInputString =
GlobalDeclarations.gStrInputString & ", @3rdLevel
varchar(5)=''"
 End If

 'Set flag to tell the ViewMishaps form to use the correct
SP for viewing factor category recordsets.
 GlobalDeclarations.bUseHFACSSummaryQuery = True
 DoCmd.OpenForm "2-0-1-2-frm-ViewMishaps"

Exit_goGetRecords:
 Exit Sub

Err_goGetRecords:
 MsgBox ERR.Description
 Resume Exit_goGetRecords

End Sub

'===
'Function/Sub Name: goGetRecords()
'
'Description: Store the values of the filter boxes on form open
and
'after every update so that you have something to compare
current values to.
'This way, you can trap when users make changes.

'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub storeValues()

 sStoredAircraft = Me.cboAircraft.Value
 sStoredType = Me.cboType.Value
 sStoredClass = Me.cboClass.Value
 sStoredLocation = Me.cboLocation.Value
 sStoredOrganization = Me.cboOrganization.Value
 vStoredYear = Me.cboYear.Value
 sStored1stLevel = Me.cboFactors1.Value
 sStored2ndLevel = Me.cboFactors2.Value
 sStored3rdLevel = Me.cboFactors3.Value

End Sub

'===
'Function/Sub Name: checkIfFormIsDirty()
'
'Description: If the user changed values in the combo boxes
but has not
'updated the form, tell him about it and give the option to
refresh
'before viewing records. If you don't do this, then the user
might
'change the combo box criteria and then forget to hit the
update
'button before double-clicking one of the boxes. This could
create
'confusing results.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub checkIfFormIsDirty()

 If bUpdateNeeded = True Then

 If sStoredAircraft <> Me.cboAircraft.Value Or _
 sStoredType <> Me.cboType.Value Or _
 sStoredClass <> Me.cboClass.Value Or _
 sStoredLocation <> Me.cboLocation.Value Or _
 sStoredOrganization <> Me.cboOrganization.Value
Or _
 vStoredYear <> Me.cboYear.Value Or _
 sStored1stLevel <> Me.cboFactors1.Value Or _
 sStored2ndLevel <> Me.cboFactors2.Value Or _
 sStored3rdLevel <> Me.cboFactors3.Value Then

 Dim response As Variant
 response = MsgBox("You have changed selection
criteria but not clicked the UPDATE button to refresh the
data." & Chr(13) & Chr(13) & "Do you want to update the
data with the new criteria?", vbYesNo + vbQuestion +
vbDefaultButton1, "Form Needs Update")
 If response = vbYes Then
 goGetUpdate

 219

 Else 'Set the comboboxes to the old values.
 Me.cboAircraft.Value = sStoredAircraft
 Me.cboType.Value = sStoredType
 Me.cboClass.Value = sStoredClass
 Me.cboLocation.Value = sStoredLocation
 Me.cboOrganization.Value =
sStoredOrganization
 Me.cboYear.Value = vStoredYear
 Me.cboFactors1.Value = sStored1stLevel
 Me.cboFactors2.Value = sStored2ndLevel
 Me.cboFactors3.Value = sStored3rdLevel
 End If
 End If

 End If

End Sub

'===
'Function/Sub Name:
' - lblADA_DblClick()
' ... thru ...
' - txtPRES_DblClick()
'
'Description: Private subs-for detecting box double clicks
follow.
'Three subroutines are needed for each box. One for the label
'and one form each text box (number and percentage).
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub lblADA_DblClick(Cancel As Integer)
 If Me.txtADA.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "ADA"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblASS_DblClick(Cancel As Integer)
 If Me.txtASS.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "ASS"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblATT_DblClick(Cancel As Integer)
 If Me.txtATT.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"

 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "ATT"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblCON_DblClick(Cancel As Integer)
 If Me.txtCON.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "CON"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblCRT_DblClick(Cancel As Integer)
 If Me.txtCRT.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "CRT"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblCRW_DblClick(Cancel As Integer)
 If Me.txtCRW.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "CRW"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub lblDES_DblClick(Cancel As Integer)
 If Me.txtDES.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "DES"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblDMG_DblClick(Cancel As Integer)
 If Me.txtDMG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty

 220

 Me.cboFactors3.Value = "DMG"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblDOC_DblClick(Cancel As Integer)
 If Me.txtDOC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "DOC"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblDUC_DblClick(Cancel As Integer)
 If Me.txtDUC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "DUC"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblEHZ_DblClick(Cancel As Integer)
 If Me.txtEHZ.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "EHZ"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblENV_DblClick(Cancel As Integer)
 If Me.txtENV.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "ENV"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub lblEQP_DblClick(Cancel As Integer)
 If Me.txtEQP.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "EQP"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel

End Sub

Private Sub lblERR_DblClick(Cancel As Integer)
 If Me.txtERR.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "ERR"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub lblEXC_DblClick(Cancel As Integer)
 If Me.txtEXC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "EXC"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblFLG_DblClick(Cancel As Integer)
 If Me.txtFLG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "FLG"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblIDQ_DblClick(Cancel As Integer)
 If Me.txtIDQ.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "IDQ"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblINA_DblClick(Cancel As Integer)
 If Me.txtINA.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "INA"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblINF_DblClick(Cancel As Integer)

 221

 If Me.txtINF.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "INF"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblJDG_DblClick(Cancel As Integer)
 If Me.txtJDG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "JDG"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblLGT_DblClick(Cancel As Integer)
 If Me.txtLGT.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "LGT"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblLIM_DblClick(Cancel As Integer)
 If Me.txtLIM.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "LIM"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblMA_DblClick(Cancel As Integer)
 If Me.txtMA.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors1.Value = "MA"
 goGetRecords
 Me.cboFactors1.Value = sStored1stLevel
End Sub

Private Sub lblMC_DblClick(Cancel As Integer)
 If Me.txtMC.Value = 0 Then

 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors1.Value = "MC"
 goGetRecords
 Me.cboFactors1.Value = sStored1stLevel
End Sub

Private Sub lblMED_DblClick(Cancel As Integer)
 If Me.txtMED.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "MED"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub lblMG_DblClick(Cancel As Integer)
 If Me.txtMG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors1.Value = "MG"
 goGetRecords
 Me.cboFactors1.Value = sStored1stLevel
End Sub

Private Sub lblMIS_DblClick(Cancel As Integer)
 If Me.txtMIS.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "MIS"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblMNT_DblClick(Cancel As Integer)
 If Me.txtMNT.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "MNT"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblRDY_DblClick(Cancel As Integer)
 If Me.txtRDY.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"

 222

 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "RDY"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub lblROU_DblClick(Cancel As Integer)
 If Me.txtROU.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "ROU"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblSKL_DblClick(Cancel As Integer)
 If Me.txtSKL.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "SKL"
 goGetRecords
 Me.cboFact ors3.Value = sStored3rdLevel
End Sub

Private Sub lblSUP_DblClick(Cancel As Integer)
 If Me.txtSUP.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "SUP"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub lblTRG_DblClick(Cancel As Integer)
 If Me.txtTRG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "TRG"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblPHY_DblClick(Cancel As Integer)
 If Me.txtPHY.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty

 Me.cboFactors3.Value = "PHY"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblCOM_DblClick(Cancel As Integer)
 If Me.txtCOM.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrict ive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "COM"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblVIO_DblClick(Cancel As Integer)
 If Me.txtVIO.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "VIO"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub lblWC_DblClick(Cancel As Integer)
 If Me.txtWC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFact ors1.Value = "WC"
 goGetRecords
 Me.cboFactors1.Value = sStored1stLevel
End Sub

Private Sub lblWRK_DblClick(Cancel As Integer)
 If Me.txtWRK.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "WRK"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub lblWXE_DblClick(Cancel As Integer)
 If Me.txtWXE.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "WXE"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel

 223

End Sub

Private Sub lblKNW_DblClick(Cancel As Integer)
 If Me.txtKNW.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "KNW"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblIFC_DblClick(Cancel As Integer)
 If Me.txtIFC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "IFC"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblOBS_DblClick(Cancel As Integer)
 If Me.txtOBS.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "OBS"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblUNA_DblClick(Cancel As Integer)
 If Me.txtUNA.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "UNA"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblOPS_DblClick(Cancel As Integer)
 If Me.txtOPS.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "OPS"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblORG_DblClick(Cancel As Integer)

 If Me.txtORG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "ORG"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub lblPRB_DblClick(Cancel As Integer)
 If Me.txtPRB.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "PRB"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblPRO_DblClick(Cancel As Integer)
 If Me.txtPRO.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "PRO"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub lblRES_DblClick(Cancel As Integer)
 If Me.txtRES.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "RES"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

'Number text boxes start here.

Private Sub txtADA_DblClick(Cancel As Integer)
 If Me.txtADA.Value = 0 Then
 MsgBox "There are no records in that cat egory to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "ADA"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtASS_DblClick(Cancel As Integer)
 If Me.txtASS.Value = 0 Then

 224

 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "ASS"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtATT_DblClick(Cancel As Integer)
 If Me.txtATT.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "ATT"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtCON_DblClick(Cancel As Integer)
 If Me.txtCON.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "CON"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtCRT_DblClick(Cancel As Integer)
 If Me.txtCRT.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "CRT"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtCRW_DblClick(Cancel As Integer)
 If Me.txtCRW.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "CRW"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtDES_DblClick(Cancel As Integer)
 If Me.txtDES.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"

 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "DES"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtDMG_DblClick(Cancel As Integer)
 If Me.txtDMG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "DMG"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtDOC_DblClick(Cancel As Integer)
 If Me.txtDOC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "DOC"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtDUC_DblClick(Cancel As Integer)
 If Me.txtDUC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "DUC"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtEHZ_DblClick(Cancel As Integer)
 If Me.txtEHZ.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "EHZ"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtENV_DblClick(Cancel As Integer)
 If Me.txtENV.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty

 225

 Me.cboFactors2.Value = "ENV"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtEQP_DblClick(Cancel As Integer)
 If Me.txtEQP.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "EQP"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtERR_DblClick(Cancel As Integer)
 If Me.txtERR.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "ERR"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtEXC_DblClick(Cancel As Integer)
 If Me.txtEXC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "EXC"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtFLG_DblClick(Cancel As Integer)
 If Me.txtFLG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "FLG"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtIDQ_DblClick(Cancel As Integer)
 If Me.txtIDQ.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "IDQ"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel

End Sub

Private Sub txtINA_DblClick(Cancel As Integer)
 If Me.txtINA.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "INA"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtINF_DblClick(Cancel As Integer)
 If Me.txtINF.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "INF"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtJDG_DblClick(Cancel As Integer)
 If Me.txtJDG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "JDG"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtLGT_DblClick(Cancel As Integer)
 If Me.txtLGT.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "LGT"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtLIM_DblClick(Cancel As Integer)
 If Me.txtLIM.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "LIM"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtMA_DblClick(Cancel As Integer)

 226

 If Me.txtMA.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors1.Value = "MA"
 goGetRecords
 Me.cboFactors1.Value = sStored1stLevel
End Sub

Private Sub txtMC_DblClick(Cancel As Integer)
 If Me.txtMC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors1.Value = "MC"
 goGetRecords
 Me.cboFactors1.Value = sStored1stLevel
End Sub

Private Sub txtMED_DblClick(Cancel As Integer)
 If Me.txtMED.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "MED"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtMG_DblClick(Cancel As Integer)
 If Me.txtMG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors1.Value = "MG"
 goGetRecords
 Me.cboFactors1.Value = sStored1stLevel
End Sub

Private Sub txtMIS_DblClick(Cancel As Integer)
 If Me.txtMIS.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "MIS"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtMNT_DblClick(Cancel As Integer)
 If Me.txtMNT.Value = 0 Then

 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "MNT"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPROU_DblClick(Cancel As Integer)
 If Me.txtROU.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "ROU"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPSKL_DblClick(Cancel As Integer)
 If Me.txtSKL.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "SKL"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtRDY_DblClick(Cancel As Integer)
 If Me.txtRDY.Value = 0 Then
 MsgBox "There are no records in that catego ry to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "RDY"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtROU_DblClick(Cancel As Integer)
 If Me.txtROU.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "ROU"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtSKL_DblClick(Cancel As Integer)
 If Me.txtSKL.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"

 227

 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "SKL"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtSUP_DblClick(Cancel As Integer)
 If Me.txtSUP.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "SUP"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtTRG_DblClick(Cancel As Integer)
 If Me.txtTRG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "TRG"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPHY_DblClick(Cancel As Integer)
 If Me.txtPHY.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "PHY"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtCOM_DblClick(Cancel As Integer)
 If Me.txtCOM.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "COM"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtVIO_DblClick(Cancel As Integer)
 If Me.txtVIO.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty

 Me.cboFactors2.Value = "VIO"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtWC_DblClick(Cancel As Integer)
 If Me.txtWC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors1.Value = "WC"
 goGetRecords
 Me.cboFactors1.Value = sStored1stLevel
End Sub

Private Sub txtWRK_DblClick(Cancel As Integer)
 If Me.txtWRK.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "WRK"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtWXE_DblClick(Cancel As Integer)
 If Me.txtWXE.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "WXE"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtKNW_DblClick(Cancel As Integer)
 If Me.txtKNW.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "KNW"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtIFC_DblClick(Cancel As Integer)
 If Me.txtIFC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "IFC"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel

 228

End Sub

Private Sub txtOBS_DblClick(Cancel As Integer)
 If Me.txtOBS.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "OBS"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtUNA_DblClick(Cancel As Integer)
 If Me.txtUNA.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "UNA"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtOPS_DblClick(Cancel As Integer)
 If Me.txtOPS.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "OPS"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtORG_DblClick(Cancel As Integer)
 If Me.txtORG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamat ion, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "ORG"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtPRB_DblClick(Cancel As Integer)
 If Me.txtPRB.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "PRB"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPRO_DblClick(Cancel As Integer)

 If Me.txtPRO.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "PRO"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtRES_DblClick(Cancel As Integer)
 If Me.txtRES.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "RES"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

'Percentage textboxes start here.

Private Sub txtPADA_DblClick(Cancel As Integer)
 If Me.txtADA.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "ADA"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPASS_DblClick(Cancel As Integer)
 If Me.txtASS.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "ASS"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPATT_DblClick(Cancel As Integer)
 If Me.txtATT.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "ATT"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPCON_DblClick(Cancel As Integer)
 If Me.txtCON.Value = 0 Then

 229

 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "CON"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPCRT_DblClick(Cancel As Integer)
 If Me.txtCRT.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "CRT"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPCRW_DblClick(Cancel As Integer)
 If Me.txtCRW.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "CRW"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtPDES_DblClick(Cancel As Integer)
 If Me.txtDES.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "DES"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPDMG_DblClick(Cancel As Integer)
 If Me.txtDMG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "DMG"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPDOC_DblClick(Cancel As Integer)
 If Me.txtDOC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"

 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "DOC"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPDUC_DblClick(Cancel As Integer)
 If Me.txtDUC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "DUC"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPEHZ_DblClick(Cancel As Integer)
 If Me.txtEHZ.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "EHZ"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPENV_DblClick(Cancel As Integer)
 If Me.txtENV.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "ENV"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtPEQP_DblClick(Cancel As Integer)
 If Me.txtEQP.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "EQP"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtPERR_DblClick(Cancel As Integer)
 If Me.txtERR.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty

 230

 Me.cboFactors2.Value = "ERR"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtPEXC_DblClick(Cancel As Integer)
 If Me.txtEXC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "EXC"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPFLG_DblClick(Cancel As Integer)
 If Me.txtFLG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "FLG"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPIDQ_DblClick(Cancel As Integer)
 If Me.txtIDQ.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "IDQ"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPINA_DblClick(Cancel As Integer)
 If Me.txtINA.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "INA"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPINF_DblClick(Cancel As Integer)
 If Me.txtINF.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "INF"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel

End Sub

Private Sub txtPJDG_DblClick(Cancel As Integer)
 If Me.txtJDG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "JDG"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPLGT_DblClick(Cancel As Integer)
 If Me.txtLGT.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "LGT"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPLIM_DblClick(Cancel As Integer)
 If Me.txtLIM.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "LIM"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPMA_DblClick(Cancel As Integer)
 If Me.txtMA.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors1.Value = "MA"
 goGetRecords
 Me.cboFactors1.Value = sStored1stLevel
End Sub

Private Sub txtPMC_DblClick(Cancel As Integer)
 If Me.txtMC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors1.Value = "MC"
 goGetRecords
 Me.cboFactors1.Value = sStored1stLevel
End Sub

Private Sub txtPMED_DblClick(Cancel As Integer)

 231

 If Me.txtMED.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "MED"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtPMG_DblClick(Cancel As Integer)
 If Me.txtMG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors1.Value = "MG"
 goGetRecords
 Me.cboFactors1.Value = sStored1stLevel
End Sub

Private Sub txtPMIS_DblClick(Cancel As Integer)
 If Me.txtMIS.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "MIS"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPMNT_DblClick(Cancel As Integer)
 If Me.txtMNT.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "MNT"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPRDY_DblClick(Cancel As Integer)
 If Me.txtRDY.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "RDY"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtPSUP_DblClick(Cancel As Integer)
 If Me.txtSUP.Value = 0 Then

 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "SUP"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtPTRG_DblClick(Cancel As Integer)
 If Me.txtTRG.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "TRG"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPPHY_DblClick(Cancel As Integer)
 If Me.txtPHY.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "PHY"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPCOM_DblClick(Cancel As Integer)
 If Me.txtCOM.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "COM"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPVIO_DblClick(Cancel As Integer)
 If Me.txtVIO.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "VIO"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtPWC_DblClick(Cancel As Integer)
 If Me.txtWC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"

 232

 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors1.Value = "WC"
 goGetRecords
 Me.cboFactors1.Value = sStored1stLevel
End Sub

Private Sub txtPWRK_DblClick(Cancel As Integer)
 If Me.txtWRK.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "WRK"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtPWXE_DblClick(Cancel As Integer)
 If Me.txtWXE.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "WXE"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPKNW_DblClick(Cancel As Integer)
 If Me.txtKNW.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "KNW"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPIFC_DblClick(Cancel As Integer)
 If Me.txtIFC.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "IFC"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPOBS_DblClick(Cancel As Integer)
 If Me.txtOBS.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty

 Me.cboFactors3.Value = "OBS"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPUNA_DblClick(Cancel As Integer)
 If Me.txtUNA.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "UNA"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPOPS_DblClick(Cancel As Integer)
 If Me.txtOPS.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "OPS"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPORG_DblClick(Cancel As Integer)
 If Me.txtORG.Value = 0 Then
 MsgBox "There are no records in that cat egory to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors2.Value = "ORG"
 goGetRecords
 Me.cboFactors2.Value = sStored2ndLevel
End Sub

Private Sub txtPPRB_DblClick(Cancel As Integer)
 If Me.txtPRB.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "PRB"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

Private Sub txtPPRO_DblClick(Cancel As Integer)
 If Me.txtPRO.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "PRO"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel

 233

End Sub

Private Sub txtPRES_DblClick(Cancel As Integer)
 If Me.txtRES.Value = 0 Then
 MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
 Exit Sub
 End If
 checkIfFormIsDirty
 Me.cboFactors3.Value = "RES"
 goGetRecords
 Me.cboFactors3.Value = sStored3rdLevel
End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this

'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFo rmName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 234

FORMCLASS-4-0-1-0-frm-ExpertGraph

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 4-0-1-0-frm-Expert Graph
'
'Author: Pat Flanders & Scott Tufts
'
'This class is used to select the X and Y axis criteria and pass
'the users selections to global variables that the
'4-0-1-2-frm-TheActualGraph can use to display the graph.
'
'References:
' - 4-0-1-2-frm-TheActualGraph
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name:
' - cmdClose_MouseMove()
' ... thru ...
' - cmdGraph_MouseMove()
'
'Description: Changes the color of the command button text
'in response to a mouse move event.
'
'Input: None
'
'Output: None
'
'References: None
'
'===

Private Sub cmdClose_MouseMove(Button As Integer, Shift
As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdGraph.ForeColor = QBColor(0)
 Me.cmdClose.ForeColor = QBColor(9)
End Sub
Private Sub cmdGraph_MouseMove(Button As Integer, Shift
As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdGraph.ForeColor = QBColor(9)
 Me.cmdClose.ForeColor = QBColor(0)
End Sub

'===
'Function/Sub Name: cmdGraph_Click()
'

'Description: Passes the appropriate field names
corresponding to
'user choices for X and Y axis graph criteria to global
variables
'for the 4-0-1-2-frm-TheActualGraph form to actually create
the
'graph.
'
'Input: None
'
'Output: None
'
'References:
' - 4-0-1-2-frm-TheActualGraph
' - GlobalDeclarations.gStrXFieldToGraph
' - GlobalDeclarations.gStrYFieldToGraph
'
'===
Private Sub cmdGraph_Click()

 If Me.fraX.Value = Me.fraY.Value Then
 MsgBox "Your selections for the X and Y axis must be
different.", vbOKOnly + vbExclamation, "Choose Different
Values"
 Exit Sub
 End If

 Select Case Me.fraX.Value
 Case 1 'Aircraft
 If Me.chkUseCodesX.Value = True Then
 GlobalDeclarations.gStrXFieldToGraph =
"Aircraft_FK"
 Else
 GlobalDeclarations.gStrXFieldToGraph =
"Aircraft_FK"
 End If
 Case 2 'Organization
 If Me.chkUseCodesX.Value = True Then
 GlobalDeclarations.gStrXFieldToGraph =
"OrgID_FK"
 Else
 GlobalDeclarations.gStrXFieldToGraph =
"OrgName"
 End If
 Case 3 'Location
 If Me.chkUseCodesX.Value = True Then
 GlobalDeclarations.gStrXFieldToGraph =
"LocationID_FK"
 Else
 GlobalDeclarations.gStrXFieldToGraph =
"MishapLocation"
 End If
 Case 4 'Class
 If Me.chkUseCodesX.Value = True Then
 GlobalDeclarations.gStrXFieldToGraph =
"Class_FK"
 Else
 GlobalDeclarations.gStrXFieldToGraph =
"MishapClassDefinition"
 End If
 Case 5 'Type
 If Me.chkUseCodesX.Value = True Then
 GlobalDeclarations.gStrXFieldToGraph =
"Type_FK"

 235

 Else
 GlobalDeclarations.gStrXFieldToGraph =
"MishapTypeDefinition"
 End If
 Case 6 'Year
 If Me.chkUseCodesX.Value = True Then
 GlobalDeclarations.gStrXFieldToGraph = "Year"
 Else
 GlobalDeclarations.gStrXFieldToGraph = "Year"
 End If
 End Select

 Select Case Me.fraY.Value
 Case 1 'Aircraft
 If Me.chkUseCodesY.Value = True Then
 GlobalDeclarations.gStrYFieldToGraph =
"Aircraft_FK"
 Else
 GlobalDeclarations.gStrYFieldToGraph =
"Aircraft_FK"
 End If
 Case 2 'Organization
 If Me.chkUseCodesY.Value = True Then
 GlobalDeclarations.gStrYFieldToGraph =
"OrgID_FK"
 Else
 GlobalDeclarations.gStrYFieldToGraph =
"OrgName"
 End If
 Case 3 'Location
 If Me.chkUseCodesY.Value = True Then
 GlobalDeclarations. gStrYFieldToGraph =
"LocationID_FK"
 Else
 GlobalDeclarations.gStrYFieldToGraph =
"MishapLocation"
 End If
 Case 4 'Class
 If Me.chkUseCodesY.Value = True Then
 GlobalDeclarations.gStrYFieldToGraph =
"Class_FK"
 Else
 GlobalDeclarations.gStrYFieldToGraph =
"MishapClassDefinition"
 End If
 Case 5 'Type
 If Me.chkUseCodesY.Value = True Then
 GlobalDeclarations.gStrYFieldT oGraph =
"Type_FK"
 Else
 GlobalDeclarations.gStrYFieldToGraph =
"MishapTypeDefinition"
 End If
 Case 6 'Year
 If Me.chkUseCodesY.Value = True Then
 GlobalDeclarations.gStrYFieldToGraph = "Year"
 Else
 GlobalDeclarations.gStrYFieldToGraph = "Year"
 End If
 End Select

 DoCmd.OpenForm "7-0-0-1-PopUpFrm-
waitProgressBar", acNormal, "", "", acReadOnly, acNormal
 DoCmd.RepaintObject acForm, "7-0-0-1-PopUpFrm-
waitProgressBar"
 DoCmd.OpenForm "4-0-1-2-frm-TheActualGraph"
 DoCmd.Close acForm, "7-0-0-1-PopUpFrm-
waitProgressBar"

End Sub

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()
 Application.CommandBars("mnuOther").Visible = True
End Sub

'===
'Function/Sub Name: Form_Deactivate()
'
'Description: Updates the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Deactivate()
 Application.CommandBars("mnuOther").Visible = False
End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Close()

 Applicat ion.CommandBars("mnuOther").Visible = False
 Application.CommandBars("mnuProgramMain").Visible =
True
 Forms![MainMenu].Visible = True

End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None

 236

'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "4-0-1-0-frm-ExpertGraph"
End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: Updates the menu bar and sets the focus to the
'close button.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Open(Cancel As Integer)

 Forms![MainMenu].Visible = False
 Application.CommandBars("mnuOther").Visible = True

 ' Make the button text blue when it gets the focus
 Me.cmdGraph.ForeColor = QBColor(0)
 Me.cmdClose.ForeColor = QBColor(0)

 Me.cmdClose.SetFocus

End Sub

'===
'Function/Sub Name: cmdClose_Click
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None

'
'===
Private Sub cmdClose_Click()
On Error GoTo Err_cmdClose_Click

 DoCmd.Close acForm, "4-0-1-0-frm-ExpertGraph"

Exit_cmdClose_Click:
 Exit Sub

Err_cmdClose_Click:
 MsgBox ERR.Description
 Resume Exit_cmdClose_Click

End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 237

FORMCLASS-4-0-1-2-frm-TheActualGraph

Option Compare Database
Option Explicit

'Reusable variable for opening a connection
Dim cnn As Connection

'Reusable variable for opening a connection used in
conjunction
'with cnn.
Dim oCmd As ADODB.Command

'Reusable variable for recordset operations
Dim rst As ADODB.Recordset

'Arrays for storing user selections from the "Select X Values"
'and "Select Y Values" list boxes.
Dim aryItemsSelectedX() As Integer
Dim aryItemsSelectedY() As Integer

'###
' FORM DESCRIPTION
'###
'Class Name: 4-0-1-2-frm-TheActualGraph
'
'Author: Pat Flanders & Scott Tufts
'
'Description: Uses the MSChart20 Active-X control to create
a
'graph based upon globalvariables passed from the
'4-0-1-0-frm-ExpertGraph form.
'
'The MSChart20 control creates a graph based upon values in
its
'DataGrid. The datagrid is not visible and must be populated
'completely via code. Various methods in this class are used
'to populate the datagrid and then show portions of it based
'on input from the user.
'
'The datagrid data is obtained from the RAC (Replacement
For
'Access Crosstab) stored procedures to create the crosstab
results
'based on the values of
GlobalDeclarations.gStrXFieldToGraph and
'GlobalDeclarations.gStrYFieldToGraph
'
'References:
' - MSChart2.0 Active X control.
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: chkStack_AfterUpdate()

'
'Description: Sets the Stacking option of the MSChart
control
'in response to a checkbox update.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub chkStack_AfterUpdate()

 'Turn stacking on or off
 If Me.chkStack.Value = True Then
 Me.chtTheGraph.Stacking = True
 Else
 Me.chtTheGraph.Stacking = False
 End If

End Sub

'===
'Function/Sub Name: chkTranspose_AfterUpdate()
'
'Description: Sets the DataSeriesInRow option of the
MSChart control
'in response to a checkbox update.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub chkTranspose_AfterUpdate()

 'Turn transpose of X and Y axis on or off
 If Me.chkTranspose.Value = True Then
 Me.chtTheGraph.Plot.DataSeriesInRow = True
 Else
 Me.chtTheGraph.Plot.DataSeriesInRow = False
 End If

End Sub

'===
'Function/Sub Name: chtTheGraph_LostFocus()
'
'Description: Updates the "Tips" label with information for
the
'user.
'
'Input: None
'
'Output: None
'
'References: None
'
'===

 238

Private Sub chtTheGraph_LostFocus()
 Me.lblTips.Caption = "Select a point to see its value."
End Sub

'===
'Function/Sub Name: cmdClose_Click()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdClose_Click()
On Error GoTo Err_cmdClose_Click

 DoCmd.Close

Exit_cmdClose_Click:
 Exit Sub

Err_cmdClose_Click:
 MsgBox ERR.Description
 Resume Exit_cmdClose_Click

End Sub

'===
'Function/Sub Name: cmdUpdate_Click()
'
'Description: Rebuilds the MSChart20 control's Datagrid
based upon
'lstShowTheseX_AfterUpdate() and
lstShowTheseY_AfterUpdate() information
'(which corresponds to the users selections in the X and Y
axis
'list box selection criteria).
'
'HINT: Uncomment the debug.print lines to troubleshoot this
code.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdUpdate_Click()

 'MsgBox strValueList

 'Go to the beginning of the recordset.
 rst.MoveFirst

 Me.chtTheGraph.DataGrid.RowCount =
Me.lstShowTheseX.ItemsSelected.Count
 'Debug.Print "RowCount = " &
Me.lstShowTheseX.ItemsSelected.Count
 Me.chtTheGraph.DataGrid.RowLabelCount =
Me.lstShowTheseX.ItemsSelected.Count + 1

 'Debug.Print "RowLabelCount = " &
Me.lstShowTheseX.ItemsSelected.Count + 1
 Me.chtTheGraph.DataGrid.ColumnCount =
Me.lstShowTheseY.ItemsSelected.Count
 'Debug.Print "ColumnCount = " &
Me.lstShowTheseY.ItemsSelected.Count
 Me.chtTheGraph.DataGrid.ColumnLabelCount =
Me.lstShowTheseY.ItemsSelected.Count
 'Debug.Print "ColumnLabelCount = " &
Me.lstShowTheseY.ItemsSelected.Count

 Dim row As Integer
 Dim col As Integer
 Dim iX As Integer
 Dim iY As Integer

 'Set column labels
 rst.MoveFirst
 For iY = LBound(aryItemsSelectedY) To
UBound(aryItemsSelectedY) - 1
 'Debug.Print
Me.chtTheGraph.DataGrid.ColumnLabel(iY + 1, 1) & " = "
& rst.Fields(aryItemsSelectedY(iY)).Name
 Me.chtTheGraph.DataGrid.ColumnLabel(iY + 1, 1) =
rst.Fields(aryItemsSelectedY(iY)).Name
 Next 'of aryItemsSelectedY()

 'Set row labels.
 For iX = LBound(aryItemsSelectedX) To
UBound(aryItemsSelectedX) - 1
 rst.MoveFirst
 For row = 0 To (rst.RecordCount - 1)
 If aryItemsSelectedX(iX) = row Then
 Me.chtTheGraph.DataGrid.RowLabel(iX + 1, 1) =
rst.Fields(0)
 'Debug.Print "Row: " & iX + 1 & " Label: " &
rst.Fields(0)
 End If
 rst.MoveNext
 Next

 'Load the data.
 rst.MoveFirst
 Dim nullflag As Boolean
 'Loop through all X values
 For row = 0 To (rst.RecordCount - 1)
 If aryItemsSelectedX(iX) = row Then
 For iY = LBound(aryItemsSelectedY) To
UBound(aryItemsSelectedY) - 1
 'Debug.Print "Row: " & iX + 1 & ", Col: " &
iY + 1 & " Value: " & rst.Fields(aryItemsSelectedY(iY))
 If IsNull(rst.Fields(aryItemsSelectedY(iY)))
Then nullflag = True
 Me.chtTheGraph.DataGrid.SetData iX + 1, iY
+ 1, rst.Fields(aryItemsSelectedY(iY)), nullflag
 nullflag = False
 Next
 End If
 rst.MoveNext
 Next
 Next 'of aryItemsSelectedX()

End Sub

'===
'Function/Sub Name: Form_Close()
'

 239

'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Close()

 Application.CommandBars("mnuOther").Visible = True
 Application.CommandBars("mnuPrintGraph").Visible =
False
 'Clean up
 rst.Close
 Set oCmd = Nothing
 cnn.Close

End Sub

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()
 Application.CommandBars("mnuPrintGraph").Visible =
True
End Sub

'===
'Function/Sub Name: Form_Deactivate()
'
'Description: Updates the menu bar.
'
'Input : None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Deactivate()
 Application.CommandBars("mnuPrintGraph").Visible =
False
End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None

'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 'Dynamically resize the form based on screen resolution.
 ezSizeForm Me, -1
 MoveToCenter "4-0-1-2-frm-TheActualGraph"
End Sub

'===
'Function/Sub Name: Form_Open
'
'Description: Builds the MSChart20 control's Datagrid based
upon
'the results of a RAC stored procedure (4-0-1-0-
flanCrossTabForGraphing).
'Also, sets up visual aspects of the graph and populates the X
and
'Y multi-select listboxes with values.
'
'HINT: Uncomment the debug.print lines to troubleshoot this
code.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Open(Cancel As Integer)

 'Update menu bars.
 Application.CommandBars("mnuOther").Visible = False
 Application.CommandBars("mnuPrintGraph").Visible =
True

 'Set default button values.
 Me.togEnlarge.Value = 0
 Me.chkStack.Value = False
 Me.chkTranspose.Value = False

 'Run a stored procedure to get the graph data
 Dim objPrmColleft As ADODB.Parameter
 Dim objPrmColtop As ADODB.Parameter

 Set cnn = CurrentProject.Connection
 cnn.CursorLocation = adUseClient
 Set rst = New ADODB.Recordset
 Set oCmd = New ADODB.Command
 oCmd.ActiveConnection = cnn
 oCmd.CommandText = """4-0-1-0-
flanCrossTabForGraphing"""
 oCmd.CommandType = adCmdStoredProc

 'Create parameters for the SP.
 'They have to be appended in the same order that they
appear in
 'the stored procedure.

 Set objPrmColleft = oCmd.CreateParameter("@colleft",
adVarChar, adParamInput, 500)
 oCmd.Parameters.Append objPrmColleft
 objPrmColleft.Value =
GlobalDeclarations.gStrXFieldToGraph

 240

 Set objPrmColtop = oCmd.CreateParameter("@coltop",
adVarChar, adParamInput, 500)
 oCmd.Parameters.Append objPrmColtop
 objPrmColtop.Value =
GlobalDeclarations.gStrYFieldToGraph

 'Run the SP
 Set rst = oCmd.Execute

 'Build the data grid for the chart . . . this is how MSChart
objects
 'get input.
 Dim row As Integer
 Dim col As Integer

 Me.chtTheGraph.DataGrid.RowCount = rst.RecordCount
 'Debug.Print "RowCount = " & rst.RecordCount
 Me.chtTheGraph.DataGrid.RowLabelCount =
rst.RecordCount + 1
 'Debug.Print "RowLabelCount = " & rst.RecordCount +
1
 Me.chtTheGraph.DataGrid.ColumnCount =
rst.Fields.Count - 1
 'Debug.Print "ColumnCount = " & rst.Fields.Count - 1
 Me.chtTheGraph.DataGrid.ColumnLabelCount =
rst.Fields.Count - 1
 'Debug.Print "ColumnLabelCount = " &
rst.Fields.Count - 1

 'Debug.Print

 'Set row labels
 'First declare a temporary string to create values for the list
box.
 Dim tempvaluelistX As String
 Dim tempvaluelistY As String
 tempvaluelistX = ""
 tempvaluelistY = ""

 rst.MoveFirst
 For row = 0 To (rst.RecordCount - 1)
 Me.chtTheGraph.DataGrid.RowLabel(row + 1, 1) =
Trim(rst.Fields(0))
 'Debug.Print "Row: " & row + 1 & " Label: " &
rst.Fields(0)
 'Add the label to the list box.

 'Replace commas and semicolons with dashes
becuase the mess up
 'the list
 Dim astrText As String
 Dim iCount As Integer
 astrText = Trim(rst.Fields(0))

 'Loop through array, replacing commas and
semicolons
 For iCount = 1 To Len(astrText)

 If Mid(astrText, iCount, 1) = "," Or
Mid(astrText, iCount, 1) = ";" Then
 'If array element satisfies wildcard search,
 'replace it.
 Mid(astrText, iCount, 1) = "-"
 End If
 Next

 'Join string.

 tempvaluelistX = tempvaluelistX & row & ";" &
astrText & ";"

 'Debug.Print "Col1 " & row; " Col2: " & rst.Fields(0)
 rst.MoveNext
 Next

 'Populate the Select X list box
 Me.lstShowTheseX.ColumnCount = 2
 Me.lstShowTheseX.ColumnWidths = "0;1"
 Me.lstShowTheseX.RowSourceType = "Value List"
 Me.lstShowTheseX.RowSource = tempvaluelistX
 'Select all the values
 ReDim aryItemsSelectedX(Me.lstShowTheseX.ListCount)
 Dim iListItemIndex As Integer
 For iListItemIndex = 0 To Me.lstShowTheseX.ListCount -
1
 Me.lstShowTheseX.Selected(iListItemIndex) = True
 aryItemsSelectedX(iListItemIndex) = iListItemIndex
 Next

 'Set column labels
 'First column is already done.
 'Other columns.
 rst.MoveFirst
 Dim j As Integer
 j = 1
 For col = 0 To (rst.Fields.Count - 2)
 Me.chtTheGraph.DataGrid.ColumnLabel(j, 1) =
Trim(rst.Fields(col + 1).Name)
 'Debug.Print "Col: " & col + 1 & " Label: " &
rst.Fields((col + 1)).Name
 'Add the label to the list box.

 'Replace commas and semicolons with dashes
becuase the mess up
 'the list
 'Check for null fields and only operate on those that
are not null
 astrText = Trim(rst.Fields(col + 1).Name)

 ' Loop through array, replacing commas and
semicolons
 For iCount = 1 To Len(astrText)

 If Mid(astrText, iCount, 1) = "," Or
Mid(astrText, iCount, 1) = ";" Then
 ' If array element satisfies wildcard search,
 ' replace it.
 Mid(astrText, iCount, 1) = "-"
 End If
 Next
 ' Join string.
 tempvaluelistY = tempvaluelistY & j & ";" &
astrText & ";"

 'Debug.Print "Col1 " & j & " Col2: " & rst.Fields(col +
1).Name
 j = j + 1
 Next

 'Populate the Select Y list box
 Me.lstShowTheseY.ColumnCount = 2
 Me.lstShowTheseY.ColumnWidths = "0;1"
 Me.lstShowTheseY.RowSourceType = "Value List"
 Me.lstShowTheseY.RowSource = tempvaluelistY
 'Select all the values
 ReDim aryItemsSelectedY(Me.lstShowTheseY.ListCount)

 241

 For iListItemIndex = 0 To Me.lstShowTheseY.ListCount -
1
 Me.lstShowTheseY.Selected(iListItemIndex) = True
 aryItemsSelectedY(iListItemIndex) = iListItemIndex +
1
 Next

 'Load the data.
 rst.MoveFirst
 Dim nullflag As Boolean
 For row = 0 To (rst.RecordCount - 1)
 For col = 0 To (rst.Fields.Count - 2)
 'Debug.Print "Row: " & row + 1 & ", Col: " & col + 1
& " Value: " & rst.Fields(col + 1)
 If IsNull(rst.Fields(col + 1)) Then nullflag = True
 Me.chtTheGraph.DataGrid.SetData row + 1, col + 1,
rst.Fields(col + 1), nullflag
 nullflag = False
 Next
 rst.MoveNext
 Next

 'Leave for future use.
 ' Use manual scale to display y axis (value axis)
 'With
Me.chtTheGraph.Plot.Axis(VtChAxisIdY).ValueScale
 ' .Auto = False
 ' .Minimum = 0
 ' .Maximum = Int(maxvalue * 1.1)
 'End With

 ' Use manual scale to display x axis
 'With
Me.chtTheGraph.Plot.Axis(VtChAxisIdX).ValueScale
 ' .Auto = False
 ' .Minimum = 0
 ' .Maximum =
Me.chtTheGraph.DataGrid.RowLabelCount
 'End With

 'Set Font size for X Axis
 Dim currentaxis As MSChart20Lib.Axis
 Dim currentlabel As MSChart20Lib.Label
 ' Get a reference to the x axis
 Set currentaxis =
Me.chtTheGraph.Plot.Axis(VtChAxisIdX)
 ' Loop though and set the font of each label
 For Each currentlabel In currentaxis.Labels
 currentlabel.VtFont.Name = "small fonts"
 currentlabel.VtFont.Size = 7
 Next currentlabel

 'set up the legend
 With Me.chtTheGraph
 .Legend.Location.Locat ionType =
VtChLocationTypeTop
 .Legend.VtFont.Style = VtFontStyleBold
 .Legend.Location.RECT.Max.Set 7560, 5132
 .Legend.Location.RECT.Min.Set 3004, 4864
 End With

End Sub

'===
'Function/Sub Name: fraChart_AfterUpdate()
'

'Description: Sets the ChartType option of the MSChart
control
'in response to a radio button selection. It has to check
'the value of fraDimensions to do this, so it knows if the
'chart should be 2d or 3d.
'
'Input : None
'
'Output: None
'
'References: fraDimensions.value
'
'===
Private Sub fraChart_AfterUpdate()

 Select Case Me.fraChart.Value
 Case 1
 If Me.fraDimensions.Value = 1 Then
 Me.chtTheGraph.chartType =
VtChChartType2dBar
 Else
 Me.chtTheGraph.chartType =
VtChChartType3dBar
 End If
 Case 2
 If Me.fraDimensions.Value = 1 Then
 Me.chtTheGraph.chartType =
VtChChartType2dLine
 Else
 Me.chtTheGraph.chartType =
VtChChartType3dLine
 End If
 Case 3
 If Me.fraDimensions.Value = 1 Then
 Me.chtTheGraph.chartType =
VtChChartType2dArea
 Else
 Me.chtTheGraph.chartType =
VtChChartType3dArea
 End If
 Case 4
 If Me.fraDimensions.Value = 1 Then
 Me.chtTheGraph.chartType =
VtChChartType2dStep
 Else
 Me.chtTheGraph.chartType =
VtChChartType3dStep
 End If
 End Select

End Sub

'===
'Function/Sub Name: fraDimensions_AfterUpdate()
'
'Description: Sets the ChartType option with respect to
number
'of dimensions (2d or 3d) of the MSChart control
'in response to a radio button selection. It has to check
'the value of fraChartType to do this, so it knows what style
'chart to create.
'
'Input: None
'
'Output: None
'
'References: fraChart.Value

 242

'
'===
Private Sub fraDimensions_AfterUpdate()

 If Me.fraDimensions.Value = 1 Then
 Select Case Me.fraChart.Value
 Case 1
 Me.chtTheGraph.chartType =
VtChChartType2dBar
 Case 2
 Me.chtTheGraph.chartType =
VtChChartType2dLine
 Case 3
 Me.chtTheGraph.chartType =
VtChChartType2dArea
 Case 4
 Me.chtTheGraph.chartType =
VtChChartType2dStep
 End Select
 Else
 Select Case Me.fraChart.Value
 Case 1
 Me.chtTheGraph.chartType =
VtChChartType3dBar
 Case 2
 Me.chtTheGraph.chartType =
VtChChartType3dLine
 Case 3
 Me.chtTheGraph.chartType =
VtChChartType3dArea
 Case 4
 Me.chtTheGraph.chartType =
VtChChartType3dStep
 End Select
 Me.lblTips.Caption = "Hold down the Ctrl key and
mouse down to rotate the chart."
 End If

End Sub

'===
'Function/Sub Name: lstShowTheseX_AfterUpdate()
'
'Description: Builds the array used by cmdUpdate_Click() to
update
'the datagrid rows (X Axis) based on the users X-axis
selections.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub lstShowTheseX_AfterUpdate()

 Dim lst As ListBox
 Dim varItem As Variant
 Dim intIndex As Integer
 Dim intCount As Integer
 Dim intRow As Integer
 Dim intRows As Integer
 Dim intColumn As Integer
 Dim intColumns As Integer

 Set lst = Me.lstShowTheseX

 'Check that at least one value has been selected
 If lst.ItemsSelected.Count = 0 Then
 MsgBox "Please select at least one X value"
 Me.lblTips.Caption = "You must select at least one X-
Axis and one Y-Axis value."
 lst.SetFocus
 Me.cmdUpdate.Enabled = False 'disable update button.
 Exit Sub
 End If

 'Since an item was selected from the list box, enable the
update button
 If Me.lstShowTheseY.ItemsSelected.Count >= 1 Then
 Me.lblTips.Caption = "Select a point to see its value."
 Me.cmdUpdate.Enabled = True
 Else
 Me.lblTips.Caption = "You must select at least one Y-
Axis value, too."
 End If

 'Get the count of selected items and redim the array to hold
them
 intColumns = lst.ColumnCount
 intRows = lst.ItemsSelected.Count
 ReDim aryItemsSelectedX(intRows)

 'Add the index of the value selected in the box to the array.
This
 'index corresponds to the index of the value in the
recordset that
 'was queried when the form opened. This will be used
when the user
 'clicks the Update button to select just those records.
 Dim i As Integer
 i = 0
 For Each varItem In lst.ItemsSelected
 aryItemsSelectedX(i) = Nz(lst.Column(0, varItem))
 'Debug.Print "Added to Array: " & aryItemsSelectedX(i)
 i = i + 1
 Next varItem

 'This code prints the output to the debug window.
Uncomment to
 'help debug.
 'Debug.Print "-------------"
 'Dim s As String
 's = ""
 'For i = LBound(aryItemsSelectedX) To
UBound(aryItemsSelectedX) - 1
 ' s = s & aryItemsSelectedX(i) & ", "
 'Next
 'Debug.Print s

End Sub

Private Sub lstShowTheseX_LostFocus()
 Me.lblTips.Caption = "Select a point to see its value."
End Sub

'===
'Function/Sub Name: lstShowTheseY_AfterUpdate()
'
'Description: Builds the array used by cmdUpdate_Click() to
update

 243

'the datagrid columns (Y Axis) based on the users Y-axis
selections.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub lstShowTheseY_AfterUpdate()

 Dim lst As ListBox
 Dim varItem As Variant
 Dim intIndex As Integer
 Dim intCount As Integer
 Dim intRow As Integer
 Dim intRows As Integer
 Dim intColumn As Integer
 Dim intColumns As Integer

 Set lst = Me.lstShowTheseY

 'Check that at least one value has been selected
 If lst.ItemsSelected.Count = 0 Then
 MsgBox "Please select at least one Y value"
 Me.lblTips.Caption = "You must select at least one X-
Axis and one Y-Axis value."
 lst.SetFocus
 Me.cmdUpdate.Enabled = False 'disable update button.
 Exit Sub
 End If

 'Since an item was selected from the list box, enable the
update button
 If Me.lstShowTheseX.ItemsSelected.Count >= 1 Then
 Me.lblTips.Caption = "Select a point to see its value."
 Me.cmdUpdate.Enabled = True
 Else
 Me.lblTips.Caption = "You must select at least one X-
Axis value, too."
 End If

 'Get the count of selected items and redim the array to hold
them
 intColumns = lst.ColumnCount
 intRows = lst.ItemsSelected.Count
 ReDim aryItemsSelectedY(intRows)

 'Add the index of the value selected in the box to the array.
This
 'index corresponds to the index of the value in the
recordset that
 'was queried when the form opened. This will be used
when the user
 'clicks the Update button to select just those records.
 Dim i As Integer
 i = 0
 For Each varItem In lst.ItemsSelected
 aryItemsSelectedY(i) = Nz(lst.Column(0, varItem))
 'Debug.Print "Added to Array: " & aryItemsSelectedY(i)
 i = i + 1
 Next varItem

 'This code prints the output to the debug window.
Uncomment to
 'help debug.
 'Debug.Print "-------------"

 'Dim s As String
 's = ""
 'For i = LBound(aryItemsSelectedY) To
UBound(aryItemsSelectedY) - 1
 ' s = s & aryItemsSelectedY(i) & ", "
 'Next
 'Debug.Print s

End Sub

'===
'Function/Sub Name: lstShowTheseY_LostFocus()
'
'Description: Updates the "Tips" label with information for
the
'user.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub lstShowTheseY_LostFocus()
 Me.lblTips.Caption = "Select a point to see its value."
End Sub

'===
'Function/Sub Name: Option13_LostFocus()
'
'Description: Updates the "Tips" label with information for
the
'user.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Option13_LostFocus()
 Me.lblTips.Caption = "Select a point to see its value."
End Sub

'===
'Function/Sub Name: togEnlarge_AfterUpdate()
'
'Description: Enlarges or shrinks the form using the
ezSizeForm
'class.
'
'Input: None
'
'Output: None
'
'References: ezSizeForm
'
'===
Private Sub togEnlarge_AfterUpdate()

 'Make it big
 If Me.togEnlarge.Value = -1 Then
 ezSizeForm Me, 1.37

 244

 Me.ScrollBars = 3
 DoCmd.Maximize

 'Make it small
 Else
 DoCmd.Restore
 Me.ScrollBars = 0
 ezSizeForm Me, 0.73
 Me.Repaint
 End If

End Sub

'===
'Function/Sub Name: chtTheGraph_PointSelected
'
'Description: Updates the "Tips" label with information
specified
'when the user clicks on a datapoint in the MSChart20 object.
'
'Input: Automatically generated by a mouse click.
'
'Output: None
'
'References: None
'
'===
Private Sub chtTheGraph_PointSelected(Series As Integer, _
 DataPoint As Integer, MouseFlags As Integer, Cancel As
Integer)
 'This allows the user to see the value of any particular data
point in a
 'series by selecting it. The value of the data point is shown
in the label
 'named lblTips.

 If Me.chkTranspose.Value = False Then
 Me.chtTheGraph.Column = Series
 Me.chtTheGraph.row = DataPoint
 Me.lblTips.Caption = "Value of Series " & Chr(34) &
Me.chtTheGraph.DataGrid.ColumnLabel(Series, 1) &
Chr(34) & ", point " & Chr(34) &
Me.chtTheGraph.DataGrid.RowLabel(DataPoint, 1) &
Chr(34) & " = " & Me.chtTheGraph.Data
 Else

 Me.chtTheGraph.Column = DataPoint
 Me.chtTheGraph.row = Series
 Me.lblTips.Caption = "Value of Series " & Chr(34) &
Me.chtTheGraph.DataGrid.RowLabel(Series, 1) & Chr(34)
& ", point " & Chr(34) &
Me.chtTheGraph.DataGrid.ColumnLabel(DataPoint, 1) &
Chr(34) & " = " & Me.chtTheGraph.Data
 End If

End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 245

FORMCLASS-7-0-0-1-PopUpFrm-waitProgressBar

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 7-0-0-1-PopUpFrm-waitProgressBar
'
'Author: Pat Flanders & Scott Tufts
'
'This class shows a pop-up form with spinning globe while
data
'for other forms is being loaded.
'
'References:
' - clFormWindow
' - ez_SizingFunctions
' - ConnectionFunctions
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "7-0-0-1-PopUpFrm-waitProgressBar"
End Sub

'===
'Function/Sub Name: Form_Close()

'
'Description: Ensures the mouspointer gets set back to
normal.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Close()
 Screen.MousePointer = 0
End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 246

FORMCLASS-8-0-0-1-frm-Reports

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 8-0-0-1-frm-Reports
'
'Author: Pat Flanders & Scott Tufts
'
'This class is the form for selecting the type of report to run.
'
'References:
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
' - All reports
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdCloseReportMenu_Click()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdCloseReportMenu_Click()
 DoCmd.Close acForm, "8-0-0-1-frm-Reports"
End Sub

'===
'Function/Sub Name:
' - cmdAll_Click()
' - cmdAircraft_Click()
' - cmdClass_Click()
' - cmdLocation_Click()
' - cmdOrganization_Click()
' - cmdType_Click()
' - cmdYear_Click()
' - cmdChron_Click()
' - cmdCloseReportMenu_Click()
'
'Description: The following 9 functions launch their
respective
'reports in response to command button click events.
'
'Input: None
'
'Output: None
'

'References: None
'
'===
Private Sub cmdAircraft_Click()
 On Error GoTo startError
 Me.Visible = False
 ConnectionFunctions.waitScreen "2-2-Distribution-
Aircraft"
 'DoCmd.OpenReport "2-2-Distribution-Aircraft",
acViewPreview
exitSub:
 Exit Sub
startError:
 MsgBox "You must have a default printer installed in
order to preview reports.", vbCritical + vbOKOnly, "Can't
Find A Printer"
End Sub

Private Sub cmdAll_Click()
 On Error GoTo startError
 Me.Visible = False
 ConnectionFunctions.waitScreen "2-1-Distribution-
AllMishaps"
 'DoCmd.OpenReport "2-1-Distribution-AllMishaps",
acViewPreview
exitSub:
 Exit Sub
startError:
 MsgBox "You must have a default printer installed in
order to preview reports.", vbCritical + vbOKOnly, "Can't
Find A Printer"
End Sub
Private Sub cmdClass_Click()
 On Error GoTo startError
 Me.Visible = False
 ConnectionFunctions.waitScreen "2-4-Distribution-Class"
 'DoCmd.OpenReport "2-4-Distribution-Class",
acViewPreview
exitSub:
 Exit Sub
startError:
 MsgBox "You must have a default printer installed in
order to preview reports.", vbCritical + vbOKOnly, "Can't
Find A Printer"
End Sub
Private Sub cmdLocation_Click()
 On Error GoTo startError
 Me.Visible = False
 ConnectionFunctions.waitScreen "2-3-Distribution-
Location"
 'DoCmd.OpenReport "2-3-Distribution-Location",
acViewPreview
exitSub:
 Exit Sub
startError:
 MsgBox "You must have a default printer installed in
order to preview reports.", vbCritical + vbOKOnly, "Can't
Find A Printer"
End Sub
Private Sub cmdOrganization_Click()
 On Error GoTo startError
 Me.Visible = False
 ConnectionFunctions.waitScreen "2-5-Distribution-
Organization"

 247

 'DoCmd.OpenReport "2-5-Distribution-Organization",
acViewPreview
exitSub:
 Exit Sub
startError:
 MsgBox "You must have a default printer installed in
order to preview reports.", vbCritical + vbOKOnly, "Can't
Find A Printer"
End Sub
Private Sub cmdYear_Click()
 On Error GoTo startError
 Me.Visible = False
 ConnectionFunctions.waitScreen "2-7-Distribution-Year"
 'DoCmd.OpenReport "2-7-Distribution-Year",
acViewPreview
exitSub:
 Exit Sub
startError:
 MsgBox "You must have a default printer installed in
order to preview reports.", vbCritical + vbOKOnly, "Can't
Find A Printer"
End Sub
Private Sub cmdType_Click()
 On Error GoTo startError
 Me.Visible = False
 ConnectionFunctions.waitScreen "2-6-Distribution-Type"
 'DoCmd.OpenReport "2-6-Distribution-Type",
acViewPreview
exitSub:
 Exit Sub
startError:
 MsgBox "You must have a default printer installed in
order to preview reports.", vbCritical + vbOKOnly, "Can't
Find A Printer"
End Sub
Private Sub cmdChron_Click()
 On Error GoTo startError
 Me.Visible = False
 ConnectionFunctions.waitScreen "3-0-Chronological-
AllMishaps"
 'DoCmd.OpenReport "3-0-Chronological-AllMishaps",
acViewPreview
exitSub:
 Exit Sub
startError:
 MsgBox "You must have a default printer installed in
order to preview reports.", vbCritical + vbOKOnly, "Can't
Find A Printer"
End Sub

'===
'Function/Sub Name:
' - cmdAll_MouseMove()
' - cmdAircraft_MouseMove()
' - cmdClass_MouseMove()
' - cmdLocation_MouseMove()
' - cmdOrganization_MouseMove()
' - cmdType_MouseMove()
' - cmdYear_MouseMove()
' - cmdChron_MouseMove()
' - cmdCloseReportMenu_MouseMove()
'
'Description: The following 9 functions update text color on
the
'command buttons in response to mouse over events.
'
'Input: None

'
'Output: None
'
'References: None
'
'===
Private Sub cmdAll_MouseMove(Button As Integer, Shift As
Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdAll.ForeColor = QBColor(9)
 Me.cmdAircraft.ForeColor = QBColor(0)
 Me.cmdClass.ForeColor = QBColor(0)
 Me.cmdLocation.ForeColor = QBColor(0)
 Me.cmdOrganization.ForeColor = QBColor(0)
 Me.cmdType.ForeColor = QBColor(0)
 Me.cmdChron.ForeColor = QBColor(0)
 Me.cmdCloseReportMenu.ForeColor = QBColor(0)
 Me.cmdYear.ForeColor = QBColor(0)
End Sub

Private Sub cmdAircraft_MouseMove(Button As Integer,
Shift As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdAll.ForeColor = QBColor(0)
 Me.cmdAircraft.ForeColor = QBColor(9)
 Me.cmdClass.ForeColor = QBColor(0)
 Me.cmdLocation.ForeColor = QBColor(0)
 Me.cmdOrganization.ForeColor = QBColor(0)
 Me.cmdType.ForeColor = QBColor(0)
 Me.cmdChron.ForeColor = QBColor(0)
 Me.cmdCloseReportMenu.ForeColor = QBColor(0)
 Me.cmdYear.ForeColor = QBColor(0)
End Sub
Private Sub cmdClass_MouseMove(Button As Integer, Shift
As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdAll.ForeColor = QBColor(0)
 Me.cmdAircraft.ForeColor = QBColor(0)
 Me.cmdClass.ForeColor = QBColor(9)
 Me.cmdLocation.ForeColor = QBColor(0)
 Me.cmdOrganization.ForeColor = QBColor(0)
 Me.cmdType.ForeColor = QBColor(0)
 Me.cmdChron.ForeColor = QBColor(0)
 Me.cmdCloseReportMenu.ForeColor = QBColor(0)
 Me.cmdYear.ForeColor = QBColor(0)
End Sub
Private Sub cmdLocation_MouseMove(Button As Integer,
Shift As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdAll.ForeColor = QBColor(0)
 Me.cmdAircraft.ForeColor = QBColor(0)
 Me.cmdClass.ForeColor = QBColor(0)
 Me.cmdLocation.ForeColor = QBColor(9)
 Me.cmdOrganization.ForeColor = QBColor(0)
 Me.cmdType.ForeColor = QBColor(0)
 Me.cmdChron.ForeColor = QBColor(0)
 Me.cmdCloseReportMenu.ForeColor = QBColor(0)
 Me.cmdYear.ForeColor = QBColor(0)
End Sub
Private Sub cmdOrganization_MouseMove(Button As
Integer, Shift As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdAll.ForeColor = QBColor(0)
 Me.cmdAircraft.ForeColor = QBColor(0)
 Me.cmdClass.ForeColor = QBColor(0)
 Me.cmdLocation.ForeColor = QBColor(0)
 Me.cmdOrganization.ForeColor = QBColor(9)
 Me.cmdType.ForeColor = QBColor(0)

 248

 Me.cmdYear.ForeColor = QBColor(0)
 Me.cmdChron.ForeColor = QBColor(0)
 Me.cmdCloseReportMenu.ForeColor = QBColor(0)
End Sub
Private Sub cmdType_MouseMove(Button As Integer, Shift
As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdAll.ForeColor = QBColor(0)
 Me.cmdAircraft.ForeColor = QBColor(0)
 Me.cmdClass.ForeColor = QBColor(0)
 Me.cmdLocation.ForeColor = QBColor(0)
 Me.cmdOrganization.ForeColor = QBColor(0)
 Me.cmdType.ForeColor = QBColor(9)
 Me.cmdChron.ForeColor = QBColor(0)
 Me.cmdCloseReportMenu.ForeColor = QBColor(0)
 Me.cmdYear.ForeColor = QBColor(0)
End Sub
Private Sub cmdChron_MouseMove(Button As Integer, Shift
As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdAll.ForeColor = QBColor(0)
 Me.cmdAircraft.ForeColor = QBColor(0)
 Me.cmdClass.ForeColor = QBColor(0)
 Me.cmdLocation.ForeColor = QBColor(0)
 Me.cmdOrganization.ForeColor = QBColor(0)
 Me.cmdType.ForeColor = QBColor(0)
 Me.cmdChron.ForeColor = QBColor(9)
 Me.cmdCloseReportMenu.ForeColor = QBColor(0)
 Me.cmdYear.ForeColor = QBColor(0)
End Sub
Private Sub cmdCloseReportMenu_MouseMove(Button As
Integer, Shift As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdAll.ForeColor = QBColor(0)
 Me.cmdAircraft.ForeColor = QBColor(0)
 Me.cmdClass.ForeColor = QBColor(0)
 Me.cmdLocation.ForeColor = QBColor(0)
 Me.cmdOrganization.ForeColor = QBColor(0)
 Me.cmdType.ForeColor = QBColor(0)
 Me.cmdChron.ForeColor = QBColor(0)
 Me.cmdCloseReportMenu.ForeColor = QBColor(9)
 Me.cmdYear.ForeColor = QBColor(0)
End Sub
Private Sub cmdYear_MouseMove(Button As Integer, Shift
As Integer, X As Single, Y As Single)
 ' Make the button text blue when it gets the focus
 Me.cmdAll.ForeColor = QBColor(0)
 Me.cmdAircraft.ForeColor = QBColor(0)
 Me.cmdClass.ForeColor = QBColor(0)
 Me.cmdLocation.ForeColor = QBColor(0)
 Me.cmdOrganization.ForeColor = QBColor(0)
 Me.cmdType.ForeColor = QBColor(0)
 Me.cmdYear.ForeColor = QBColor(9)
 Me.cmdChron.ForeColor = QBColor(0)
 Me.cmdCloseReportMenu.ForeColor = QBColor(0)
End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None

'
'===
Private Sub Form_Close()

 Application.CommandBars("mnuOther").Visible = False
 Application.CommandBars("mnuProgramMain").Visible =
True
 Forms![MainMenu].Visible = True

End Sub

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()
 Application.CommandBars("mnuOther").Visible = True
End Sub

'===
'Function/Sub Name: Form_Deactivate()
'
'Description: Updates the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Deactivate()
 Application.CommandBars("mnuOther").Visible = False
End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()

 ezSizeForm Me, -1
 MoveToCenter "8-0-0-1-frm-Reports"

End Sub

 249

'===
=========================
'Function/Sub Name: Form_Open
'
'Description: Updates the menu bar and sets the focus to the
first
'command button, setting its color to blue.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Open(Cancel As Integer)

 Forms![MainMenu].Visible = False
 Application.CommandBars("mnuOther").Visible = True

 Me.cmdCloseReportMenu.SetFocus

 'Make the button text blue when it gets the focus
 Me.cmdAll.ForeColor = QBColor(0)
 Me.cmdAircraft.ForeColor = QBColor(0)
 Me.cmdClass.ForeColor = QBColor(0)
 Me.cmdLocation.ForeColor = QBColor(0)
 Me.cmdOrganization.ForeColor = QBColor(0)
 Me.cmdType.ForeColor = QBColor(0)
 Me.cmdChron.ForeColor = QBColor(0)
 Me.cmdCloseReportMenu.ForeColor = QBColor(0)
 Me.cmdYear.ForeColor = QBColor(0)

End Sub

'===
=========================
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 250

FORMCLASS-MainMenu

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: MainMenu
'
'Author: Pat Flanders & Scott Tufts
'
'Description: This class is the main switchboard for the
program.
'It is responsible for launching all other processes, connecting
'to the SQL server, validating Administrator settings, and
determining
'O/S platform.
'
'References:
' - Connection functions
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
' - Numerous forms
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()
 Application.CommandBars("mnuProgramMain").Visible =
True
End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm

'
'===
Private Sub Form_Load()

 Screen.MousePointer = 11

 DoEvents

 'Set the picture for military or civilian.
 If ez_SizingFunctions.ezGetScreenRes = "640x480" Or _
 ez_SizingFunctions.ezGetScreenRes = "800x600" Or _
 ez_SizingFunctions.ezGetScreenRes = "1024x768"
Then
 If GlobalDeclarations.gStrTypeDB = "M" Then
 Me.imgCivilian.Visible = False
 Me.imgMilitary.Visible = True
 ElseIf GlobalDeclarations.gStrTypeDB = "C" Then
 Me.imgMilitary.Visible = False
 Me.imgCivilian.Visible = True
 End If
 Else
 'Dynamically resize the form based on screen resolution.
 ezSizeForm Me, -1
 MoveToCenter "MainMenu"
 If GlobalDeclarations.gStrTypeDB = "M" Then
 Me.imgCivilian.Visible = False
 Me.imgMilitary.Visible = True
 ElseIf GlobalDeclarations.gStrTypeDB = "C" Then
 Me.imgMilitary.Visible = False
 Me.imgCivilian.Visible = True
 End If
 End If

 Screen.MousePointer = 0

End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: Set initial screen colors, determine OS type, and
initiate
'connection to the SQL Server.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
' - DetermineOSDeclares
' - ConnectionFunctions
'
'===
Private Sub Form_Open(Cancel As Integer)

 'Check to see if the user accidently opened a second
instance of HFACS
 'by mistake.
 If DetermineOSDeclares.IsRunning = -1 Then
 MsgBox "You can only run one instance of HFACS-ME
at a time. This instance will now close.", vbOKOnly +
vbExclamation, "HFACS Is Already Running"

 251

 Screen.MousePointer = 11
 ConnectionFunctions.removeConnection
 End If

 Screen.MousePointer = 11

 ' Change menu color when mouse is over button
 Me.lblQuery.BackColor = QBColor(9) ' Blue
 Me.lblGraph.BackColor = QBColor(15) ' White
 Me.lblReport.BackColor = QBColor(15) ' White
 Me.lblAddEditMishaps.BackColor = QBColor(15) ' White
 Me.lblInvestigate.BackColor = QBColor(15) ' White
 Me.lblExit.BackColor = QBColor(15) ' White
 '
 Me.lblQuery.SpecialEffect = 1 ' Raised
 Me.lblGraph.SpecialEffect = 0 ' Normal
 Me.lblReport.SpecialEffect = 0 ' Normal
 Me.lblAddEditMishaps.SpecialEffect = 0 ' Normal
 Me.lblInvestigate.SpecialEffect = 0 ' Normal
 Me.lblExit.SpecialEffect = 0 ' Normal
 '
 Me.lblQuery.ForeColor = QBColor(15) ' White
 Me.lblGraph.ForeColor = QBColor(0) ' Black
 Me.lblReport.ForeColor = QBColor(0) ' Black
 Me.lblAddEditMishaps.ForeColor = QBColor(0) ' Black
 Me.lblInvestigate.ForeColor = QBColor(0) ' Black
 Me.lblExit.ForeColor = QBColor(0) ' Black

 'CreateConnection
 ConnectionFunctions.InitConnection
 lblServerConnectedTo.Caption = "Connected To Server: "
& GlobalDeclarations.gStrServerName
 lblServerConnectedTo.Visible = True
 Screen.MousePointer = 0

End Sub

'===
'Function/Sub Name: lblAddEditMishaps_Click()
'
'Description: Only Administrators can access the
administration
'functions and then, only for the local machine. This function
'ensures that the user is a Window O/S Administrator, a SQL
Server
'Administrator, and an HFACS Administrator. If all these
tests are
'passed, then the the 1-0-0-0-frm-SelectMishap form is
opened.
'
'Input: None
'
'Output: None
'
'References:
' - Invesigate.mdb
' - 1-0-0-6-PopUpFrm-AdministatorLogon
' - 1-0-0-0-frm-SelectMishap
'
'===
Private Sub lblAddEditMishaps_Click()

 On Error GoTo startError

 '** Step 1
 'Check to make sure the user is logged onto the local SQL
server.

 If GlobalDeclarations.gStrServerName = "(local)" Then

 '** Step 2
 'Now check to see if the user is a SQL Server sysadmin
by
 'passing a parameter to a stored procedure.
 Dim cnn As Connection
 Dim oCmd As ADODB.Command
 Dim rst As ADODB.Recordset
 Set cnn = CurrentProject.Connection
 cnn.CursorLocation = adUseClient
 Set rst = New ADODB.Recordset
 Set oCmd = New ADODB.Command
 oCmd.ActiveConnection = cnn
 oCmd.CommandText = """1-0-0-4-
flanIsUserSysadmin"""
 oCmd.CommandType = adCmdStoredProc
 DoCmd.SetWarnings (False)
 Set rst = oCmd.Execute
 DoCmd.SetWarnings (True)
 rst.MoveFirst

 'Check for SQL SYSADMIN permissions
 If rst!IsUserOwner <> 1 Then
 MsgBox "You must have SQL SERVER
SYSADMIN permissions to administer the HFACS
database.", vbOKOnly + vbExclamation, "Insufficient
Permissions"
 GoTo exitSub
 End If

 '** Step 3
 'Check to make sure that the user is a Windows System
Administrator
 If Trim(oHFACSConnection.getSQLServerPath) = ""
Then
 MsgBox "You must have Windows System
Administrator permissions to Administer HFACS.",
vbOKOnly + vbExclamation, "Insufficient Permissions"
 GoTo exitSub
 End If

 '** Step 4
 'Check to see if the user has already logged on as local
administrator
 'by checking the gBlnAdministrator flag, otherwise
prompt now.
 If GlobalDeclarations.gBlnAdministrator = True Then
 DoCmd.OpenForm "1-0-0-0-frm-SelectMishap"
 Else
 DoCmd.OpenForm "1-0-0-6-PopUpFrm-
AdministatorLogon"
 End If
 Else
 MsgBox "You can only administer the database when
logged onto the '(local)' server.", vbOKOnly +
vbExclamation, "Not Logged On To (local)"
 End If

exitSub:
 On Error GoTo 0
 On Error Resume Next
 rst.Close
 Set oCmd = Nothing
 cnn.Close

Exit Sub

 252

startError:
 MsgBox ERR.Description & "Error number: " &
ERR.Number
 GoTo exitSub

End Sub
'===
'Function/Sub Name: lblAddEditMishaps_MouseMove()
'
'Description: Sets command button text colors.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub lblAddEditMishaps_MouseMove(Button As
Integer, Shift As Integer, X As Single, Y As Single)

 ' Change menu color when mouse is over button
 Me.lblQuery.BackColor = QBColor(15) ' White
 Me.lblGraph.BackColor = QBColor(15) ' White
 Me.lblReport .BackColor = QBColor(15) ' White
 Me.lblAddEditMishaps.BackColor = QBColor(9) ' Blue
 Me.lblInvestigate.BackColor = QBColor(15) ' White
 Me.lblExit.BackColor = QBColor(15) ' White
 '
 Me.lblQuery.SpecialEffect = 0 ' Normal
 Me.lblGraph.Sp ecialEffect = 0 ' Normal
 Me.lblReport.SpecialEffect = 0 ' Normal
 Me.lblAddEditMishaps.SpecialEffect = 1 ' Raised
 Me.lblInvestigate.SpecialEffect = 0 ' Normal
 Me.lblExit.SpecialEffect = 0 ' Normal
 '
 Me.lblQuery.ForeColor = QBColor(0) ' Black
 Me.lblGraph.ForeColor = QBColor(0) ' Black
 Me.lblReport.ForeColor = QBColor(0) ' Black
 Me.lblAddEditMishaps.ForeColor = QBColor(15) ' White
 Me.lblInvestigate.ForeColor = QBColor(0) ' Black
 Me.lblExit.ForeColor = QBColor(0) ' Black

End Sub

'===
'Function/Sub Name: lblExit_Click()
'
'Description: Closes the program and properly disconnects
from the
'SQL server.
'
'Input: None
'
'Output: None
'
'References:
' - ConnectionFunctions
'
'===
Private Sub lblExit_Click()

 ' Prompt to see if the user really wants to quit
 DoCmd.Beep
 Dim response As Variant

 response = MsgBox("Are you sure you want to Exit?",
vbYesNo + vbCritical + vbDefaultButton2, "Exit To
Windows?")
 If response = vbYes Then ' User chose Yes.
 ConnectionFunctions.removeConnection
 End If

End Sub

'===
'Function/Sub Name: lblExit_MouseMove
'
'Description: Sets command button text colors.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub lblExit_MouseMove(Button As Integer, Shift As
Integer, X As Single, Y As Single)

 ' Change menu color when mouse is over button
 Me.lblQuery.BackColor = QBColor(15) ' White
 Me.lblGraph.BackColor = QBColor(15) ' White
 Me.lblReport.BackColor = QBColor(15) ' White
 Me.lblAddEditMishaps.BackColor = QBColor(15) ' White
 Me.lblInvestigate.BackColor = QBColor(15) ' White
 Me.lblExit.BackColor = QBColor(9) ' Blue
 '
 Me.lblQuery.SpecialEffect = 0 ' Normal
 Me.lblGraph.SpecialEffect = 0 ' Normal
 Me.lblReport.SpecialEffect = 0 ' Normal
 Me.lblAddEditMishaps.SpecialEffect = 0 ' Normal
 Me.lblInvestigate.SpecialEffect = 0 ' Normal
 Me.lblExit.SpecialEffect = 1 ' Raised
 '
 Me.lblQuery.ForeColor = QBColor(0) ' Black
 Me.lblGraph.ForeColor = QBColor(0) ' Black
 Me.lblReport.ForeColor = QBColor(0) ' Black
 Me.lblAddEditMishaps.ForeColor = QBColor(0) ' Black
 Me.lblInvestigate.ForeColor = QBColor(0) ' Black
 Me.lblExit.ForeColor = QBColor(15) ' White

End Sub

'===
'Function/Sub Name: lblGraph_Click()
'
'Description: Opens the Expert graph form (4-0-1-0-frm-
ExpertGraph).
'
'Input: None
'
'Output: None
'
'References:
' - 4-0-1-0-frm-ExpertGraph
'
'===
Private Sub lblGraph_Click()

 DoCmd.OpenForm "4-0-1-0-frm-ExpertGraph"

 253

End Sub

'===
=========================
'Function/Sub Name: lblGraph_MouseMove
'
'Description: Sets command button text colors.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub lblGraph_MouseMove(Button As Integer, Shift
As Integer, X As Single, Y As Single)

 ' Change menu color when mouse is over button
 Me.lblQuery.BackColor = QBColor(15) ' White
 Me.lblGraph.BackColor = QBColor(9) ' Blue
 Me.lblReport.BackColor = QBColor(15) ' White
 Me.lblAddEditMishaps.BackColor = QBColor(15) ' White
 Me.lblInvestigate.BackColor = QBColor(15) ' White
 Me.lblExit.BackColor = QBColor(15) ' White
 '
 Me.lblQuery.SpecialEffect = 0 ' Normal
 Me.lblGraph.SpecialEffect = 1 ' Raised
 Me.lblReport.SpecialEffect = 0 ' Normal
 Me.lblAddEditMishaps.SpecialEffect = 0 ' Normal
 Me.lblInvestigate.SpecialEffect = 0 ' Normal
 Me.lblExit.SpecialEffect = 0 ' Normal
 '
 Me.lblQuery.ForeColor = QBColor(0) ' Black
 Me.lblGraph.ForeColor = QBColor(15) ' White
 Me.lblReport.ForeColor = QBColor(0) ' Black
 Me.lblAddEditMishaps.ForeColor = QBColor(0) ' Black
 Me.lblInvestigate.ForeColor = QBColor(0) ' Black
 Me.lblExit.ForeColor = QBColor(0) ' Black

End Sub

'===
'Function/Sub Name: lblInvestigate_Click()
'
'Description: Launches the Invetigate.mdb Access database
in a separate
'process.
'
'Input: None
'
'Output: None
'
'References:
' - Investigate.mdb
'
'===
Private Sub lblInvestigate_Click()

 Dim RetVal
 RetVal = Shell("MSACCESS.EXE " & Chr(34) &
GlobalDeclarations.gStrAppPath & "Investigate.mdb" &
Chr(34), 1) ' Run Access.

End Sub

'===
'Function/Sub Name: lblInvestigate_MouseMove()
'
'Description: Sets command button text colors.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub lblInvestigate_MouseMove(Button As Integer,
Shift As Integer, X As Single, Y As Single)

 ' Change menu color when mouse is over button
 Me.lblQuery.BackColor = QBColor(15) ' White
 Me.lblGraph.BackColor = QBColor(15) ' Whit e
 Me.lblReport.BackColor = QBColor(15) ' White
 Me.lblAddEditMishaps.BackColor = QBColor(15) ' White
 Me.lblInvestigate.BackColor = QBColor(9) ' Blue
 Me.lblExit.BackColor = QBColor(15) ' White
 '
 Me.lblQuery.SpecialEffect = 0 ' Normal
 Me.lblGraph.SpecialEffect = 0 ' Normal
 Me.lblReport.SpecialEffect = 0 ' Normal
 Me.lblAddEditMishaps.SpecialEffect = 0 ' Normal
 Me.lblInvestigate.SpecialEffect = 1 ' Raised
 Me.lblExit.SpecialEffect = 0 ' Normal
 '
 Me.lblQuery.ForeColor = QBColor(0) ' Black
 Me.lblGraph.ForeColor = QBColor(0) ' Black
 Me.lblReport.ForeColor = QBColor(0) ' Black
 Me.lblAddEditMishaps.ForeColor = QBColor(0) ' Black
 Me.lblInvestigate.ForeColor = QBColor(15) ' White
 Me.lblExit.ForeColor = QBColor(0) ' Black

End Sub

'===
'Function/Sub Name: lblQuery_Click()
'
'Description: Opens the Expert graph form (2-0-1-0-frm-
QueryMenu).
'
'Input: None
'
'Output: None
'
'References:
' - 2-0-1-0-frm-QueryMenu
'
'===
Private Sub lblQuery_Click()

 DoCmd.OpenForm "2-0-1-0-frm-QueryMenu"

End Sub

'===
'Function/Sub Name: lblQuery_MouseMove()
'
'Description: Sets command button text colors.
'
'Input: None

 254

'
'Output: None
'
'References: None
'
'===
Private Sub lblQuery_MouseMove(Button As Integer, Shift
As Integer, X As Single, Y As Single)

 ' Change menu color when mouse is over button
 Me.lblQuery.BackColor = QBColor(9) ' Blue
 Me.lblGraph.BackColor = QBColor(15) ' White
 Me.lblReport.BackColor = QBColor(15) ' White
 Me.lblAddEditMishaps.BackColor = QBColor(15) ' White
 Me.lblInvestigate.BackColor = QBColor(15) ' White
 Me.lblExit.BackColor = QBColor(15) ' White
 '
 Me.lblQuery.SpecialEffect = 1 ' Raised
 Me.lblGraph.SpecialEffect = 0 ' Normal
 Me.lblReport.SpecialEffect = 0 ' Normal
 Me.lblAddEditMishaps.SpecialEffect = 0 ' Normal
 Me.lblInvestigate.SpecialEffect = 0 ' Normal
 Me.lblExit.SpecialEffect = 0 ' Normal
 '
 Me.lblQuery.ForeColor = QBColor(15) ' White
 Me.lblGraph.ForeColor = QBColor(0) ' Black
 Me.lblReport.ForeColor = QBColor(0) ' Black
 Me.lblAddEditMishaps.ForeColor = QBColor(0) ' Black
 Me.lblInvestigate.ForeColor = QBColor(0) ' Black
 Me.lblExit.ForeColor = QBColor(0) ' Black

End Sub

'===
'Function/Sub Name: lblReport_Click()
'
'Description: Opens the Report form (8-0-0-1-frm-Reports).
'
'Input: None
'
'Output: None
'
'References:
' - 8-0-0-1-frm-Reports
'
'===
Private Sub lblReport_Click()

 DoCmd.OpenForm "8-0-0-1-frm-Reports"

End Sub

'===
'Function/Sub Name: lblReport_MouseMove()
'
'Description: Sets command button text colors.
'
'Input: None
'
'Output: None
'
'References: None

'
'===
Private Sub lblReport_MouseMove(Button As Integer, Shift
As Integer, X As Single, Y As Single)

 ' Change menu color when mouse is over button
 Me.lblQuery.BackColor = QBColor(15) ' White
 Me.lblGraph.BackColor = QBColor(15) ' White
 Me.lblReport.BackColor = QBColor(9) ' Blue
 Me.lblAddEditMishaps.BackColor = QBColor(15) ' White
 Me.lblInvestigate.BackColor = QBColor(15) ' White
 Me.lblExit.BackColor = QBColor(15) ' White
 '
 Me.lblQuery.SpecialEffect = 0 ' Normal
 Me.lblGraph.SpecialEffect = 0 ' Normal
 Me.lblReport.SpecialEffect = 1 ' Raised
 Me.lblAddEditMishaps.SpecialEffect = 0 ' Normal
 Me.lblInvestigate.SpecialEffect = 0 ' Normal
 Me.lblExit.SpecialEffect = 0 ' Normal
 '
 Me.lblQuery.ForeColor = QBColor(0) ' Black
 Me.lblGraph.ForeColor = QBColor(0) ' Black
 Me.lblReport.ForeColor = QBColor(15) ' White
 Me.lblAddEditMishaps.ForeColor = QBColor(0) ' Black
 Me.lblInvestigate.ForeColor = QBColor(0) ' Black
 Me.lblExit.ForeColor = QBColor(0) ' Black

End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 255

FORMCLASS-PleaseWait

Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: PleaseWait
'
'Author: Pat Flanders & Scott Tufts
'
'Description: This class is the splash screen that user sees at
'program initiation. It is responsible for setting global
properties
'for the session at startup.
'
'References: None
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Command17_Click()
'
'Description: Closes the form. This button is not visible
during
'normal program operation and must be turned on in design
view
'to use it. It is provided for troubleshooting connection
problems
'which often result in a "hang" at this screen with now way to
'terminate program execution unless this button is enbled.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Command17_Click()
 DoCmd.Close acForm, "PleaseWait"
End Sub

'===
'Function/Sub Name: Form_Load()
'

'Description: Sets the global properties for the session. This
includes
'application icon, margins, and other default behaviors.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Load()

 Screen.MousePointer = 11

 'Determine OS and store value in a global variable
 'A value of 2 or higher means WIN 2K or WIN NT
 Dim myVer As OSVERSIONINFO
 Dim q As Long
 myVer.dwOSVersionInfoSize = 148
 q& = GetVersionEx(myVer)
 'Uncomment this line for complet o/s version description
information
 'MsgBox "Platform ID = " & myVer.dwPlatformId & ",
Version = " & myVer.dwMajorVersion & "." &
myVer.dwMinorVersion & " Build " &
(myVer.dwBuildNumber And &HFFFF&)
 GlobalDeclarations.gStrOSType = myVer.dwPlatformId

 'Set the application icon
 CurrentProject.Properties.Add "AppIcon",
Application.CurrentProject.Path & "\hfacs.ico"
 CurrentProject.Properties("AppIcon") =
Application.CurrentProject.Pat h & "\hfacs.ico"
 Application.RefreshTitleBar

 DoEvents 'Redraw screen

 'Set program GLOBAL start -up options.
 Application.SetOption "Show Startup Dialog Box", False
 Application.SetOption "Left Margin", 1
 Application.SetOption "Right Margin", 1
 Application.SetOption "Top Margin", 1
 Application.SetOption "Bottom Margin", 1
 Application.SetOption "Default Find/Replace Behavior", 1
 Application.SetOption "Behavior Entering Field", 1
 Application.SetOption "ShowWindowsInTaskBar", False

 DoEvents 'Redraw screen

 Screen.MousePointer = 0

End Sub

 256

MODULE-ConenctionFunctions

Option Compare Database
Option Explicit
'###
' MODULE DESCRIPTION
'###
'Class Name: ConnectionFunctions.bas
'
'Author: Pat Flanders & Scott Tufts
'
'Description: This module contains the vast majority of the
"helper
'functions used by the program. It contains functions for
connecting
'and disconnecting the application to a SQL server, replacing
the
'database via FTP and disk file, toggling database type,
printing
'the MS Chart graphs from the windows clipboard, as well as,
'all command bar functions and command bar menu scripts.
'
'References:
' - HFACS.dll
' - HFACSClipboard.dll
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: CreateConnection()
'
'Description: Connects the application to a SQL server and
provides
'the interface for the HFACS.dll. Reads the initial values for
'most global program variables from the HFACS.ini file via
the
'HFACS.dll and the SQL Server that becomes connected.
Verifies the
'database type and ensure that the Server being connected to
is of
'the proper type (military vice civilian).
'
'Input: None
'
'Output: None
'
'References:
' - HFACS.dll
'
'===
Public Sub CreateConnection()

 On Error GoTo startError

 Set oHFACSConnection = New HFACSConnection
 Dim bConnResults As Boolean
 bConnResults = False

 'Read in the values from the .dll

 gStrUID = oHFACSConnection.User
 gStrPWD = oHFACSConnection.Password
 gStrServerName = oHFACSConnection.ServerName
 gStrDatabaseFileName =
oHFACSConnection.DatabaseFileName
 gStrDatabaseName = oHFACSConnection.DatabaseName
 gStrAppPath = oHFACSConnection.AppPath
 gStrAutoLogon = oHFACSConnection.AutomaticLogon
 gStrFirstRun = oHFACSConnection.FirstRunCheck
 gStrNTauth = oHFACSConnection.UseNTAuth
 gStrTypeDB = oHFACSConnection.TypeDatabase
 gTheConnectionString =
oHFACSConnection.ConnectionString

StartWrongTypConnMade:

 While bConnResults = False

 bConnResults = oHFACSConnection.doConnect

StartLogon:

 If bConnResults = False Then
 Dim response As Variant
 DoCmd.Beep
 response = MsgBox("An error occurred while
trying to connect to the server." & Chr(13) & Chr(13) &
"You must connect to a server in order to use the HFACS
database." & Chr(13) & Chr(13) & "You can RETRY by
specifying new logon information or CANCEL and exit to
Windows.", vbRetryCancel + vbExclamation +
vbDefaultButton1, "Problem With Connection")

 If response = vbCancel Then
 'Exit to Windows
 Set oHFACSConnection = Nothing
 ConnectionFunctions.removeConnection

 Else
 'Logon with prompt
 bConnResults =
oHFACSConnection.doConnect(PROMPT)
 End If
 End If
 Wend

 'Reset all the local global variables to capture changes
made during the
 'logon process.
 gStrUID = oHFACSConnection.User
 gStrPWD = oHFACSConnection.Password
 gStrServerName = oHFACSConnection.ServerName
 gStrDatabaseFileName =
oHFACSConnection.DatabaseFileName
 gStrDatabaseName = oHFACSConnection.DatabaseName
 gStrAppPath = oHFACSConnection.AppPath
 gStrAutoLogon = oHFACSConnection.AutomaticLogon
 gStrFirstRun = oHFACSConnection.FirstRunCheck
 gStrNTauth = oHFACSConnection.UseNTAuth
 gStrTypeDB = oHFACSConnection.TypeDatabase
 gTheConnectionString =
oHFACSConnection.ConnectionString

 Application.CurrentProject.OpenConnection
GlobalDeclarations.gTheConnectionString

 257

 If Application.CurrentProject.IsConnected = False Then
GoTo StartLogon

 'Run stored procedure to make sure you are connecting to
the right type
 'database (military or civilian).
 'Declare objects for querying a stored procedure to get the
new record
 Dim cnn As Connection
 Dim oCmd As ADODB.Command
 Dim rst As ADODB.Recordset

 Set cnn = CurrentProject.Connection
 cnn.CursorLocation = adUseClient
 Set rst = New ADODB.Recordset
 Set oCmd = New ADODB.Command
 oCmd.ActiveConnection = cnn
 oCmd.CommandText = """9-0-0-1-flanLookupDBType"""
 oCmd.CommandType = adCmdStoredProc

 'Run the SP
 Set rst = oCmd.Execute

 'Get the record count
 rst.MoveFirst
 Dim tempString As String
 tempString = rst!Dat abaseType 'Get the database type

 'Clean up
 rst.Close
 Set oCmd = Nothing
 cnn.Close

 'MsgBox "Global: " & GlobalDeclarations.gStrTypeDB &
" Read From Remote DB: " & Trim(tempString)
 If GlobalDeclarations.gStrTypeDB <> Trim(tempString)
Then
 Dim sTempType As String
 If Trim(tempString) = "C" Then
 sTempType = "CIVILIAN but this version of HFACS
is configured for MILITARY. "
 Else
 sTempType = "MILITARY but this version of
HFACS is configured for CIVILIAN. "
 End If
 MsgBox "You are trying to connect to a database
configured for " & sTempType & _
 Chr(13) & Chr(13) & "Please connect to another
server.", vbOKOnly + vbExclamation, _
 "Can't Connect To That Type Database"
 bConnResults = False
 GoTo StartWrongTypConnMade
 End If

exitSub:

 Exit Sub

startError:
 'MsgBox Err.Description
 'MsgBox Err.Number
 bConnResults = False
 Resume StartLogon

End Sub

'===

'Function/Sub Name: InitConnection()
'
'Description: Disables the Access "close" button on the main
access
'window, preventing users from improperly shutting down
the
'application. Launches the "PleaseWait" form while the
connection
'to the SQL server is initialized, giving the illusion of
'separate threads of execution and providing the user a screen
'to look at during this long process.
'
'Input: None
'
'Output: None
'
'References:
' - PleaseWait Form
' - CloseCommand Class
'
'===
Function InitConnection()
 On Error GoTo startError

 'Disable the Access master window clos control button
 Dim c As CloseCommand
 Set c = New CloseCommand
 'Disable Close menu.
 c.Enabled = False

 DoCmd.OpenForm "PleaseWait", acNormal, "", "",
acReadOnly, acNormal
 DoCmd.RepaintObject acForm, "PleaseWait"
 ConnectionFunctions.CreateConnection
 DoCmd.Close acForm, "PleaseWait"

exitSub:
 Exit Function

startError:
 Resume exitSub

End Function

'===
'Function/Sub Name: changeServer()
'
'Description: Provides the functionality to change server
connections
'via the HFACS.dll.
'
'Input: None
'
'Output: Success or failure.
'
'References:
' - HFACS.dll
'
'===
Public Function changeServer() As Boolean

 Dim bResult As Boolean

StartWrongTypConnMade:

 'Bring up the logon prompt
 bResult = oHFACSConnection.doConnect(PROMPT)

 258

 If bResult = True Then

 'Reset all the local global variables to capture changes
made during the
 'logon process.
 gStrUID = oHFACSConnection.User
 gStrPWD = oHFACSConnection.Password
 gStrServerName = oHFACSConnection.ServerName
 gStrDatabaseFileName =
oHFACSConnection.DatabaseFileName
 gStrDatabaseName =
oHFACSConnection.DatabaseName
 gStrAppPath = oHFACSConnection.AppPath
 gStrAutoLogon =
oHFACSConnection.AutomaticLogon
 gStrFirstRun = oHFACSConnection.FirstRunCheck
 gStrNTauth = oHFACSConnection.UseNTAuth
 gStrTypeDB = oHFACSConnection.TypeDatabase
 gTheConnectionString =
oHFACSConnection.ConnectionString

 Application.CurrentProject.OpenConnection
GlobalDeclarations.gTheConnectionString

 'Run stored procedure to make sure you are connecting
to the right type
 'database (military or civilian).
 'Declare objects for querying a stored procedure to get
the new record
 Dim cnn As Connection
 Dim oCmd As ADODB.Command
 Dim rst As ADODB.Recordset

 Set cnn = CurrentProject.Connection
 cnn.CursorLocation = adUseClient
 Set rst = New ADODB.Recordset
 Set oCmd = New ADODB.Command
 oCmd.ActiveConnection = cnn
 oCmd.CommandText = """9-0-0-1-
flanLookupDBType"""
 oCmd.CommandType = adCmdStoredProc

 'Run the SP
 Set rst = oCmd.Execute

 'Get the record count
 rst.MoveFirst
 Dim tempString As String
 tempString = rst!DatabaseType 'Get the database type

 'Clean up
 rst.Close
 Set oCmd = Nothing
 cnn.Close

 'MsgBox "Global: " & GlobalDeclarations.gStrTypeDB
& " Read From Remote DB: " & Trim(tempString)
 If GlobalDeclarations.gStrTypeDB <>
Trim(tempString) Then
 Dim sTempType As String
 If Trim(tempString) = "C" Then
 sTempType = "CIVILIAN but this version of
HFACS is configured for MILITARY. "
 Else
 sTempType = "MILITARY but this version of
HFACS is configured for CIVILIAN. "

 End If
 MsgBox "You are trying to connect to a database
configured for " & sTempType & _
 Chr(13) & Chr(13) & "Please connect to another
server.", vbOKOnly + vbExclamation, _
 "Can't Connect To That Type Database"
 bResult = False
 GoTo StartWrongTypConnMade
 End If

 Form_MainMenu.lblServerConnectedTo.Caption =
"Connected To Server: " &
GlobalDeclarations.gStrServerName
 Form_MainMenu.Refresh

 changeServer = True
 Else
 changeServer = False
 End If

End Function

'===
'Function/Sub Name: getUpdateFTP()
'
'Description: Provides the functionality replace the database
on the
'local SQL server via an FTP process. THE USER MUST
BE LOGGED ON
'WITH THE SA ACCOUNT, BEING AN
ADMINISTRATOR IS NOT ENOUGH.
'
'Input: None
'
'Output: Success or failure.
'
'References:
' - HFACS.dll
'
'===
Public Function getUpdateFTP() As Boolean

 If GlobalDeclarations.gStrUID <> "sa" Then
 MsgBox "You must be logged on as SA to replace the
database", vbOKOnly + vbExclamation, "User Is Not SA"
 getUpdateFTP = False
 Exit Function
 End If

 Dim i As Integer

 getUpdateFTP = oHFACSConnection.getUpdateFTP

 On Error GoTo startError
 If getUpdateFTP = True Then
 Application.CurrentProject.CloseConnection 'Close the
Connection
 Application.CurrentProject.OpenConnection 'Set the
connection to nothing
 DoCmd.OpenForm "MainMenu"
 getUpdateFTP = True
 Else
 getUpdateFTP = False
 ConnectionFunctions.CreateConnection
 End If

exitSub:

 259

' Set oHFACSConnection = Nothing
 Exit Function

startError:
 'This block of code is required to get the connection to
close.
 'It is a documented MS Access 2000 bug.
 i = i + 1
 If i < 99 Then 'Continue trying to close connection.
 DoEvents
 Resume
 End If

 Resume exitSub

End Function

'===
'Function/Sub Name: getUpdateFromDisk()
'
'Description: Provides the functionality replace the database
on the
'local SQL server via an file on a CD or network share
process.
'THE USER MUST BE LOGGED ON WITH THE SA
ACCOUNT, BEING AN ADMINISTRATOR
'IS NOT ENOUGH.
'
'Input: None
'
'Output: Success or failure.
'
'References:
' - HFACS.dll
'
'===
Public Function getUpdateFromDisk() As Boolean

 If GlobalDeclarations.gStrUID <> "sa" Then
 MsgBox "You must be logged on as SA to replace the
database", vbOKOnly + vbExclamation, "User Is Not SA"
 getUpdateFromDisk = False
 Exit Function
 End If

 Dim i As Integer 'Counter

 getUpdateFromDisk =
oHFACSConnection.getUpdateDisk

 On Error GoTo startError
 If getUpdateFromDisk = True Then
 Application.CurrentProject.CloseConnection 'Close the
Connection
 Application.CurrentProject.OpenConnection 'Set the
connection to nothing
 DoCmd.OpenForm "MainMenu"
 getUpdateFromDisk = True
 Else
 getUpdateFromDisk = False
 ConnectionFunctions.CreateConnection
 End If

exitSub:
 Exit Function

startError:

 'This block of code is required to get the connection to
close.
 'It is a documented MS Access 2000 bug.
 i = i + 1
 If i < 99 Then 'Continue trying to close connection.
 DoEvents
 Resume
 End If

 Resume exitSub

End Function

'===
'Function/Sub Name: removeConnection()
'
'Description: Properly disconnects the application from the
SQL
'server and terminates the Access session.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Public Function removeConnection()

 Dim i As Integer 'Counter
 On Error GoTo startError
 Application.CurrentProject.CloseConnection 'Close the
Connection
 Application.CurrentProject.OpenConnection 'Set the
connectio n to nothing
 Set oHFACSConnection = Nothing

exitSub:
 Application.CommandBars("mnuProgramMain").Visible =
False
 DoCmd.Quit
 removeConnection = True
 Exit Function

startError:
 'This block of code is required to get the connection to
close.
 'It is a documented MS Access 2000 bug.
 i = i + 1
 If i < 99 Then 'Continue trying to close connection.
 DoEvents
 Resume
 End If

 Resume exitSub

End Function

'===
'Function/Sub Name: CommandbarEnable()
'
'Description: Allows manipulation of command (menu bars).
'
'This function has four arguments:
'

 260

'Cmdbar is a CommmandBar object that represents the
command
'bar containing the menu item to be enabled or disabled.
'
'CmdBarEnabled is a Boolean value in which you pass
"True"
'or "False" in order to enable or disable the menu item being
'manipulated.
'
'TopLevel is an integer representing the index of the Top-
level
'menu item being manipulated.
'
'Sublevel is an optional integer representing the index of the
'menu item being manipulated under the Top-level menu
item.
'
'Example: To disable only the "File" menu item on the
'"NorthwindCustomMenuBar" command bar, use the
following:
'
'CommandbarEnable(Commandbars("NorthwindCustomMen
uBar"),False,1)
'
'Example2: To disable the "Get external Data" Menu item
under
'the "File" menu item on the "NorthwindCustomMenuBar"
command
'bar, use the following:
'
'CommandbarEnable(Commandbars("NorthwindCustomMen
uBar"),False,1,3)
'
'To "re-enable" the same menu item, use the following:
'
'CommandbarEnable(Commandbars("NorthwindCustomMen
uBar"),True,1,3)
'
'===
Public Function CommandbarEnable(Cmdbar As
CommandBar, _
 CmdbarEnabled As Boolean, TopLevel As Integer, _
 Optional Sublevel As Integer)

 Dim SubCommandbar

 On Error GoTo Err_CommandBarEnable

 'If the commmand bar is not visible, make it so.
 If Cmdbar.Visible = False Then Cmdbar.Visible = True

 'If no menu item on a submenu is selected for
enabling\disabling,
 'enable\disable the top level menu choice only.
 If IsMissing(Sublevel) Or Sublevel = 0 Then
 Cmdbar.Controls(TopLevel).Enabled =
CmdbarEnabled
 'If a menu item on a submenu is selected for
 'enabling\disabling, do so now.
 Else
 Set SubCommandbar =
Cmdbar.Controls(TopLevel)
 SubCommandbar.Controls(Sublevel).Enabled =
CmdbarEnabled
 End If

Exit_CommandBarEnable:
 Exit Function

Err_CommandBarEnable:
 MsgBox "Error " & CStr(ERR) & " " &
ERR.Description & _
 " has occurred in the CommandBarEnable Function",
vbOKOnly, _
 "Error Detected"
 Resume Exit_CommandBarEnable

 End Function

'===
'Function/Sub Name: toggleDBType()
'
'Description: Properly disconnects the application from the
SQL
'server and terminates the Access session.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Public Function toggleDBType() As Boolean

 Dim response As Variant
 Dim sDBType As String

 If GlobalDeclarations.gStrTypeDB = "C" Then
 sDBType = "Civilian to Military. "
 Else
 sDBType = "Military to Civilian. "
 End If

 DoCmd.Beep
 response = MsgBox("You are about to toggle this database
from " & sDBType & Chr(13) & Chr(13) & "This may
require you to reconnect to HFACS." & Chr(13) & Chr(13)
& "Do you wish to continue?", vbYesNo + vbQuestion +
vbDefaultButton2, "Toggle Database Type?")

 If response = vbYes Then

 'Declare objects for querying a stored procedure to get
the new record
 Dim rsTheNewMishap As New Recordset
 Dim commandADO As New ADODB.Command
 Dim conADO As New ADODB.Connection

 ' This is where we create the Connection object.
 Set conADO = CurrentProject.Connection

 If GlobalDeclarations.gStrTypeDB = "C" Then
 GlobalDeclarations.gStrTypeDB = "M"
 rsTheNewMishap.Open "UPDATE tblDatabaseType
SET tblDatabaseType.DatabaseType = 'M' WHERE
tblDatabaseType.DatabaseType = 'C'", conADO,
adOpenDynamic, adLockOptimistic, adCmdText
 oHFACSConnection.TypeDatabase = "M"
 Else
 GlobalDeclarations.gStrTypeDB = "C"
 rsTheNewMishap.Open "UPDATE tblDatabaseType
SET tblDatabaseType.DatabaseType = 'C' WHERE
tblDatabaseType.DatabaseType = 'M'", conADO,
adOpenDynamic, adLockOptimistic, adCmdText

 261

 oHFACSConnection.TypeDatabase = "C"
 End If

 oHFACSConnection.writeINIFile

 'Destroy objects used for the query
 Set commandADO = Nothing
 Set conADO = Nothing
 Set rsTheNewMishap = Nothing

 Dim i As Integer ' counter

 On Error GoTo startError
 Application.CurrentProject.CloseConnection 'Close the
Connection
 Application.CurrentProject.OpenConnection 'Set the
connection to nothing
 DoCmd.OpenForm "MainMenu"

 toggleDBType = True
 GoTo exitSub

 End If

 toggleDBType = False

exitSub:
 Exit Function

startError:
 'This block of code is required to get the connection to
close.
 'It is a documented MS Access 2000 bug.
 i = i + 1
 If i < 99 Then 'Continue trying to close connection.
 DoEvents
 Resume
 End If

 Resume exitSub

End Function

'===
'Function/Sub Name: copyGraphToClipboard()
'
'Description: Copies the MS Chart object on form 4-0-1-2-
frm-TheActualGraph
'to the windows clipboard.
'
'Input: None
'
'Output: Success or failure.
'
'References:
' - 4-0-1-2-frm-TheActualGraph
'
'===
Public Function copyGraphToClipboard() As Boolean

 ' Call the EditCopy method to send the chart to the
clipboard
 Forms![4-0-1-2-frm-
TheActualGraph].chtTheGraph.EditCopy

 'For future use. At this point you could
 'save the data on the clipboard as a bitmap

 'you can also use clipboard viewer to see everything
 'SavePicture Clipboard.GetData, "c:\test1.bmp"

 copyGraphToClipboard = True

End Function

'===
'Function/Sub Name: toggleXLabels()
'
'Description: Toggles the X axis values visible/hidden for the
'MS Chart object on form 4-0-1-2-frm-TheActualGraph.
'
'Input: None
'
'Output: Success or failure.
'
'References:
' - 4-0-1-2-frm-TheActualGraph
'
'===
Public Function toggleXLabels() As Boolean

 'Toggle visibility of X-Axis labels
 If Forms![4-0-1-2-frm-
TheActualGraph].chtTheGraph.Plot.Axis(VtChAxisIdX).Axi
sScale.Hide = False Then
 Forms![4-0-1-2-frm-
TheActualGraph].chtTheGraph.Plot.Axis(VtChAxisIdX).Axi
sScale.Hide = True
 Else
 Forms![4-0-1-2-frm-
TheActualGraph].chtTheGraph.Plot.Axis(VtChAxisIdX).Axi
sScale.Hide = False
 End If

 toggleXLabels = True

End Function

'===
'Function/Sub Name: toggleYLabels()
'
'Description: Toggles the Y axis values visible/hidden for the
'MS Chart object on form 4-0-1-2-frm-TheActualGraph.
'
'Input: None
'
'Output: Success or failure.
'
'References:
' - 4-0-1-2-frm-TheActualGraph
'
'===
Public Function toggleYLabels() As Boolean

 'Toggle visibility of Y-Axis labels
 If Forms![4-0-1-2-frm-
TheActualGraph].chtTheGraph.Plot.Axis(VtChAxisIdY).Axi
sScale.Hide = True Then
 Forms![4-0-1-2-frm-
TheActualGraph].chtTheGraph.Plot.Axis(VtChAxisIdY).Axi
sScale.Hide = False
 Forms![4-0-1-2-frm-
TheActualGraph].chtTheGraph.Plot.Axis(VtChAxisIdY2).A
xisScale.Hide = False

 262

 Else
 Forms![4-0-1-2-frm-
TheActualGraph].chtTheGraph.Plot.Axis(VtChAxisIdY).Axi
sScale.Hide = True
 Forms![4-0-1-2-frm-
TheActualGraph].chtTheGraph.Plot.Axis(VtChAxisIdY2).A
xisScale.Hide = True
 End If

 toggleYLabels = True

End Function

'===
'Function/Sub Name: sendClipToPrinter()
'
'Description: Prints the MS Chart object on form 4-0-1-2-
frm-TheActualGraph.
'
'Input: None
'
'Output: Success or failure.
'
'References:
' - 4-0-1-2-frm-TheActualGraph
' - HFACSClipboard.dll
'
'===
Public Function sendClipToPrinter() As Boolean

 On Error GoTo startError

 'Copy the graph to the clipboard
 DoCmd.RunMacro "macroMnuCopyGraphToClipboard"

 'Print small graphs portrait and large ones landscape
 Dim oMyClipObject As New clsClipBoard
 If Forms![4-0-1-2-frm-TheActualGraph].togEnlarge.Value
= -1 Then
 oMyClipObject.clipOutLandscape
 Else
 oMyClipObject.clipOutPortrait
 End If

 sendClipToPrinter = True

exitSub:
 Set oMyClipObject = Nothing

 Exit Function

startError:
 MsgBox "There was a problem with your default printer.
Check to ensure that it is on-line and loaded with paper and
try printing again.", vbOKOnly + vbExclamation, "Problem
Printing"
 sendClipToPrinter = False
 Resume exitSub

End Function

'===
'Function/Sub Name: waitScreen()
'
'Description: Shows the please wait screen with spinning
globe
'while calculating report data.
'
'Input: None
'
'Output: None
'
'References:
' - 7-0-0-1-PopUpFrm-waitProgressBar
'
'===
Function waitScreen(sReportName As String) As Boolean
 On Error GoTo startError

 DoCmd.OpenForm "7-0-0-1-PopUpFrm-
waitProgressBar", acNormal, "", "", acReadOnly, acNormal
 DoCmd.RepaintObject acForm, "7-0-0-1-PopUpFrm-
waitProgressBar"
 DoCmd.OpenReport sReportName, acViewPreview
 DoCmd.Close acForm, "7-0-0-1-PopUpFrm-
waitProgressBar"

 waitScreen = True

exitSub:
 Exit Function

startError:
 waitScreen = False
 Resume exitSub

End Function

 263

MODULE-DeterminesOSDeclares

Option Explicit

Type OSVERSIONINFO
dwOSVersionInfoSize As Long
dwMajorVersion As Long
dwMinorVersion As Long
dwBuildNumber As Long
dwPlatformId As Long
szCSDVersion As String * 128 ' Maintenance string for PSS
usage
End Type
Declare Function GetVersionEx Lib "kernel32" Alias
"GetVersionExA" (lpVersionInformation As
OSVERSIONINFO) As Long
Declare Function GetSystemMetrics Lib "user32" (ByVal
nIndex As Long) As Long
Public Const SM_CLEANBOOT = 67
Public Const SM_DEBUG = 22
Public Const SM_SLOWMACHINE = 73
Public Const VER_PLATFORM_WIN32s = 0
Public Const VER_PLATFORM_WIN32_WINDOWS = 1
Public Const VER_PLATFORM_WIN32_NT = 2

'###
' MODULE DESCRIPTION
'###
'Class Name: DetermineOSDeclares.bas
'
'Author: Pat Flanders & Scott Tufts
'
'Description: Contains various functions for determining
system
'properties like O/S type and version of Access that is
running.
'
'The O/S type functions are declared above and result in
direct
'querying of the Windows API.
'
'References: None
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: IsRuntime()
'
'Description: Determines if Access runtime is being used to
run the
'application. Access runtime has no support for reports.
'
'Input: None
'
'Output: Success or failure.
'
'References: None
'

'===
Function IsRuntime() As Boolean

 ' Check if this application is using the run-time version of
Access.
 IsRuntime = SysCmd(acSysCmdRuntime)

End Function

'===
'Function/Sub Name: IsRunning()
'
'Description: To prevent a second instance from loading if a
user mistakenly
'attempts to launch it twice. This code is called from the
autoexec
'macro to test whether the app is already running and
terminate
'the launch if a copy of it is already open.
'
'Input: None
'
'Output: -1 means that an instance is already running.
'
'References: None
'
'===
Function IsRunning() As Integer
 If TestDDELink(Application.CurrentProject.Name) Then
 'A -1 means that this is a second instance.
 IsRunning = -1
 Else
 IsRunning = 0
 End If
End Function

' Helper Function for IsRunning() above
Function TestDDELink(ByVal strAppName$) As Integer

 Dim varDDEChannel As Variant
 On Error Resume Next
 Application.SetOption ("Ignore DDE Requests"), True
 varDDEChannel = DDEInitiate("MSAccess",
strAppName)

 ' When the app isn't already running this will error
 If ERR Then
 TestDDELink = False
 Else
 TestDDELink = True
 DDETerminate varDDEChannel
 DDETerminateAll
 End If
 Application.SetOption ("Ignore DDE Requests"), False

End Function

 264

MODULE-ezSizingFunctions

Option Compare Database
Option Explicit
'###
' MODULE DESCRIPTION
'###
'Class Name: ezSizingFunctions.bas
'
'Author: EZ Sizing Functions
' Copyright (C) 2000 Database Creations, Inc.
' Revision 6/14/00
' based on 8/25/99 code with revisionss
'
'Description: Contains various functions for dynamically
resizing
'the forms in the application based on the user's screen
resolution.
'
'
'References: None
'
'###

'***
' FUNCTIONS
'***
'Functions are defined below by the author and are Copyright
of
'Database Creations, Inc.

Type RECT
 x1 As Long
 y1 As Long
 x2 As Long
 y2 As Long
End Type

Type TEXTMETRIC
 tmHeight As Integer
 tmAscent As Integer
 tmDescent As Integer
 tmInternalLeading As Integer
 tmExternalLeading As Integer
 tmAveCharWidth As Integer
 tmMaxCharWidth As Integer
 tmWeight As Integer
 tmItalic As String * 1
 tmUnderlined As String * 1
 tmStruckOut As String * 1
 tmFirstChar As String * 1
 tmLastChar As String * 1
 tmDefaultChar As String * 1
 tmBreakChar As String * 1
 tmPitchAndFamily As String * 1
 tmCharSet As String * 1
 tmOverhang As Integer
 tmDigitizedAspectX As Integer
 tmDigitizedAspectY As Integer
End Type

Declare Function IsZoomed Lib "user32" (ByVal hwnd As
Long) As Long

Declare Function IsIconic Lib "user32" (ByVal hwnd As
Long) As Long
Declare Function GetDesktopWindow Lib "user32" () As
Long
Declare Function GetWindowRect Lib "user32" (ByVal
hwnd As Long, rectangle As RECT) As Long
Declare Function GetTextMetrics Lib "gdi32" Alias
"GetTextMetricsA" (ByVal hdc As Long, lpMetrics As
TEXTMETRIC) As Long
Declare Function GetWindowDC Lib "user32" (ByVal hwnd
As Long) As Long
Declare Function ReleaseDC Lib "user32" (ByVal hwnd As
Long, ByVal hdc As Long) As Long
Declare Function SetMapMode Lib "gdi32" (ByVal hdc As
Long, ByVal nMapMode As Long) As Long

Public Sub ezSizeForm(xForm As Form, ScaleFactor As
Single, Optional EchoOff As Boolean = True)
'This subroutine will resize the form specified by parameter
xForm by the factor of ScaleFactor
'If scale factor is 0 or negative, automatic scaling will occur
based on the following
' Value Forms originally designed for
' 0 640 x 480
' -1 800 x 600
' -2 1024 x 768
' -3 1280 x 1024
' -4 1600 x 1200
' -5 1152 x 864 OR 1152 x 870

Dim ActiveForm As Object
Dim i As Integer
Dim D(200, 3) As Single

 On Error GoTo errorHandler
 If ScaleFactor = 1 Then GoTo Done
 If ScaleFactor <= 0 Then ScaleFactor =
ezGetScaleFactor(ScaleFactor)

 If EchoOff Then DoCmd.Echo False
 Set ActiveForm = xForm

 'If form in datasheet view then don't resize
 If xForm.CurrentView <> 1 Then GoTo Done

 'If the form is maximized then don't resize
 If IsZoomed(xForm.hwnd) <> 0 Then GoTo Done

 With ActiveForm
 If ScaleFactor > 1 Then 'form is growing
 'deal with section heights and form width first
 On Error Resume Next 'handle error for non-existent
sections
 For i = 0 To 4
 .Section(i).Height = .Section(i).Height *
ScaleFactor
 Next i
 On Error GoTo errorHandler
 .Width = .Width * ScaleFactor
 End If

 'save old dimensions of subforms/groups/tabs
 For i = 0 To .Count - 1
 Select Case .Controls(i).ControlType

 265

 Case acOptionGroup, acSubform, acTabCtl
 D(i, 0) = .Controls(i).Width
 D(i, 1) = .Controls(i).Height
 D(i, 2) = .Controls(i).Left
 D(i, 3) = .Controls(i).Top
 End Select
 Next i

 'deal with controls
 For i = 0 To .Count - 1
 Select Case .Controls(i).ControlType
 Case acOptionGroup, acPage
 'do nothing now
 Case acTabCtl
 .Controls(i).TabFixedWidth =
.Controls(i).TabFixedWidth * ScaleFactor
 .Controls(i).TabFixedHeight =
.Controls(i).TabFixedHeight * ScaleFactor
 If .Controls(i).Left < 0 Then .Controls(i).Left = 0
 .Controls(i).Left = .Controls(i).Left * ScaleFactor
 .Controls(i).Top = .Controls(i).Top * ScaleFactor
 .Controls(i).Width = .Controls(i).Width *
ScaleFactor
 .Controls(i).Height = .Controls(i).Height *
ScaleFactor
 .Controls(i).fontsize = .Controls(i).fontsize *
ScaleFactor
 Case acSubform
 On Error Resume Next
 ezSizeForm .Controls(i).Form, ScaleFactor,
False
 On Error GoTo errorHandler
 Case Else
 On Error Resume Next
 If .Controls(i).Left < 0 Then .Controls(i).Left = 0
 .Controls(i).Left = .Controls(i).Left *
ScaleFactor
 .Controls(i).Top = .Controls(i).Top *
ScaleFactor
 .Controls(i).Width = .Controls(i).Width *
ScaleFactor
 .Controls(i).Height = .Controls(i).Height *
ScaleFactor
 .Controls(i).fontsize = .Controls(i).fontsize *
ScaleFactor
 On Error GoTo errorHandler
 End Select
 Next i

 'fix dimensions of subforms/groups/tabs
 If ScaleFactor > 1 Then
 On Error Resume Next
 For i = 0 To 4
 .Section(i).Height = .Section(i).Height * ScaleFactor
 Next i
 On Error GoTo errorHandler
 End If
 For i = 0 To .Count - 1
 Select Case .Controls(i).ControlType
 Case acSubform
 .Controls(i).Width = D(i, 0) * ScaleFactor
 .Controls(i).Height = D(i, 1) * ScaleFactor
 .Controls(i).Left = D(i, 2) * ScaleFactor
 .Controls(i).Top = D(i, 3) * ScaleFactor
 End Select
 Next i
 For i = 0 To .Count - 1
 Select Case .Controls(i).ControlType

 Case acOptionGroup, acTabCtl
 .Controls(i).Left = D(i, 2) * ScaleFactor
 .Controls(i).Top = D(i, 3) * ScaleFactor
 .Controls(i).Width = D(i, 0) * ScaleFactor
 .Controls(i).Height = D(i, 1) * ScaleFactor
 End Select
 Next i

 'Resize form dimensions and fit window to form
 On Error Resume Next
 For i = 0 To 4
 .Section(i).Height = 0
 Next i
 On Error GoTo errorHandler
 .Width = 0
 DoCmd.RunCommand acCmdSizeToFitForm
 GoTo Done

errorHandler:
 If ERR.Number = 2046 Then GoTo Done
 MsgBox "Error with control " & .Controls(i).Name &
vbCrLf & _
 "L: " & .Controls(i).Left & " - " & D(i, 2) & vbCrLf &
_
 "T: " & .Controls(i).Top & " - " & D(i, 3) & vbCrLf &
_
 "W: " & .Controls(i).Width & " - " & D(i, 0) &
vbCrLf & _
 "H: " & .Controls(i).Height & " - " & D(i, 1) &
vbCrLf

Done:
 If EchoOff Then DoCmd.Echo True
 End With

End Sub

Function ezGetScreenRes() As String
'This function returns the windows screen size
Dim R As RECT
Dim hwnd As Long
Dim RetVal As Long

 hwnd = GetDesktopWindow()
 RetVal = GetWindowRect(hwnd, R)
 ezGetScreenRes = (R.x2 - R.x1) & "x" & (R.y2 - R.y1)

End Function

Public Function ezGetScaleFactor(S) As Single
'Returns a scale factor for resizing based on the passed
parameter S
' which should represent the screen size a form was designed
for
' the scale factor returned is based on the current screen
resolution
 Select Case S
 Case 0 '640 x 480
 Select Case ezGetScreenRes
 Case "640x480"
 ezGetScaleFactor = 1
 Case "800x600"
 ezGetScaleFactor = 1.2
 Case "1024x768"
 ezGetScaleFactor = 1.5
 Case "1152x864", "1152x870"
 ezGetScaleFactor = 1.7
 Case "1280x1024"

 266

 ezGetScaleFactor = 1.9
 Case "1600x1200"
 ezGetScaleFactor = 2.4
 End Select
 Case -1 '800 x 600
 Select Case ezGetScreenRes
 Case "640x480"
 ezGetScaleFactor = 0.8
 Case "800x600"
 ezGetScaleFactor = 1
 Case "1024x768"
 ezGetScaleFactor = 1.2
 Case "1152x864", "1152x870"
 ezGetScaleFactor = 1.4
 Case "1280x1024"
 ezGetScaleFactor = 1.5
 Case "1600x1200"
 ezGetScaleFactor = 1.9
 End Select
 Case -2 '1024 x 768
 Select Case ezGetScreenRes
 Case "640x480"
 ezGetScaleFactor = 0.6
 Case "800x600"
 ezGetScaleFactor = 0.7
 Case "1024x768"
 ezGetScaleFactor = 1
 Case "1152x864", "1152x870"
 ezGetScaleFactor = 1.05
 Case "1280x1024"
 ezGetScaleFactor = 1.1
 Case "1600x1200"
 ezGetScaleFactor = 1.4
 End Select
 Case -3 '1280 x 1024
 Select Case ezGetScreenRes
 Case "640x480"
 ezGetScaleFactor = 0.5
 Case "800x600"
 ezGetScaleFactor = 0.6
 Case "1024x768"
 ezGetScaleFactor = 0.8
 Case "1152x864", "1152x870"
 ezGetScaleFactor = 0.9
 Case "1280x1024"
 ezGetScaleFactor = 1
 Case "1600x1200"
 ezGetScaleFactor = 1.1
 End Select
 Case -4 '1600 x 1200
 Select Case ezGetScreenRes
 Case "640x480"
 ezGetScaleFactor = 0.3
 Case "800x600"
 ezGetScaleFactor = 0.4
 Case "1024x768"
 ezGetScaleFactor = 0.6
 Case "1152x864", "1152x870"
 ezGet ScaleFactor = 0.65
 Case "1280x1024"
 ezGetScaleFactor = 0.7
 Case "1600x1200"
 ezGetScaleFactor = 1
 End Select
 Case -5 '1152 x 864 OR 1152 x 870
 Select Case ezGetScreenRes
 Case "640x480"
 ezGetScaleFactor = 0.4

 Case "800x600"
 ezGetScaleFactor = 0.6
 Case "1024x768"
 ezGetScaleFactor = 0.8
 Case "1152x864", "1152x870"
 ezGetScaleFactor = 1
 Case "1280x1024"
 ezGetScaleFactor = 1.1
 Case "1600x1200"
 ezGetScaleFactor = 1.4
 End Select
 End Select
 If ezLargeFonts Then ezGetScaleFactor =
ezGetScaleFactor / 1.25
End Function
Public Function ezReSize(xForm As Form)
'This subroutine will resize the form based on it's current
dimensions
Dim ActiveForm As Object
Dim strTag As String
Dim SH As Single
Dim SW As Single

 On Error GoTo errorHandler
 Set ActiveForm = xForm

 'If form in datasheet view then don't resize
 If xForm.CurrentView <> 1 Then GoTo Done

 'If the form is maximized then don't resize
 If IsZoomed(xForm.hwnd) <> 0 Then GoTo Done

 'If the form is minimized then don't resize
 If IsIconic(xForm.hwnd) <> 0 Then GoTo Done

 With ActiveForm
 If .tag = "Sizing" Then GoTo Done
 strTag = .tag
 .tag = "Sizing"
 'Determine size of window and set resize based on
lowest proportion
 SH = .WindowHeight / .Section(0).Height
 SW = .WindowWidth / .Width
 If SH > SW Then
 ezSizeForm xForm, SW
 Else
 ezSizeForm xForm, SH
 End If
 .Width = 0
 On Error Resume Next
 .tag = strTag
 End With
 GoTo Done
errorHandler:
 MsgBox ERR.Description
Done:

End Function

Public Function ezLargeFonts() As Boolean
'This function returns a true if large fonts are being used.
Dim hdc As Long
Dim hwnd As Long
Dim PrevMapMode As Long
Dim tm As TEXTMETRIC

 'Get the handle of the desktop window
 hwnd = GetDesktopWindow()

 267

 'Get the device context for the desktop
 hdc = GetWindowDC(hwnd)
 If hdc Then 'Set the mapping mode to pixels
 PrevMapMode = SetMapMode(hdc, 1)
 'Get the size of the system font
 GetTextMetrics hdc, tm
 'Set the mapping mode back to what it was
 PrevMapMode = SetMapMode(hdc, PrevMapMode)
 'Release the device context

 ReleaseDC hwnd, hdc
 'If the system font is more than 16 pixels high, then
large fonts are being used
 If tm.tmHeight > 16 Then ezLargeFonts = True Else
ezLargeFonts = False
 End If

End Function

 268

MODULE-GlobalDeclaration

Option Compare Database
Option Explicit
'###
' MODULE DESCRIPTION
'###
'Class Name: GlobalDeclarations.bas
'
'Author: Pat Flanders & Scott Tufts
'
'Description: Contains all definitions for application global
'variables. Most of these are needed due to the inability of
'VBA to pass parameters as part of a constructor.
'
'References: None
'
'###

'An object to represent the HFACs Connection file
Global oHFACSConnection As HFACSConnection
'Reusable object variable for the HFACSConnection Class

'INI file declarations
Global gStrUID As String 'The user ID
Global gStrPWD As String 'The user password
Global gStrServerName As String 'The name of the MSDE
or SQL Server
Global gStrDatabaseFileName As String 'The name of the
mdf
Global gStrDatabaseName As String 'The name of the
database
Global gStrAppPath As String 'The application path
Global gStrAutoLogon As String 'Toggle for sa type login or
password
Global gStrFirstRun As String 'Toggle for determining if this
is the first time the program has been run.
Global gStrNTauth As String 'Toggle for determining if
NTAuth login should be attempted
Global gStrTypeDB As String 'The type of DB this program
will represent (mil, civ, or both).

'Security Settings
Global gBlnAdministrator As Boolean

'Value of the current connectionstring
Global gTheConnectionString As String

'Public Enums
Enum iTypeLogonConstants 'For logon prompts
 PROMPT = 1
 NOPROMPT = 2
End Enum

'The Operating System in use.
Global gStrOSType As String

'Program wide variables
Global gFormNeedsRefresh As Boolean 'Reusable flag for
identifying when a calling form needs to be refreshed when it
next gets the focus.

'Administration Variables
Global gLngMishapToGet As Long 'Reusable variable for
flagging a record
Global gBlnAddAMishap As Boolean 'Flag to identify that a
new record was added
Global gStrDescription As Strin g 'For viewing of long
mishap descriptions on the select form.

'Query Variables
Global gStrInputString As String 'Reusable variable for input
string argument passing
Global bUseHFACSSummaryQuery As Boolean 'Flag for 2-
0-1-2-frm-ViewMishaps form to toggle which recordsource
to use.

'Graph Variables
Global gStrXFieldToGraph As String 'Name of X field for
Crosstab query under graph
Global gStrYFieldToGraph As String 'Name of Y field for
Crosstab query under graph

 269

APPENDIX G. CONNECTION COMPONENT

CLASS-CallBackCls

Option Explicit

'###
' CLASS DESCRIPTION
'###
'Class Name: CallbackCls.cls
'
'Author: Pat Flanders & Scott Tufts
'
'This class implements the cFTPCBK callback interface of
the HFACS
'FTP server. The methods of this class provide the means for
the
'HFACS server to notify (or callback) class instances from
this
'component which utilize the FTP server functionality.
Basically,
'the members of this class provide a communication channel.
'
'ASIDE: The FTP server (HFACSFTP.exe) provides the
functions needed
'to get FTP updates. These functions and their associated
classes
'were removed from this component and compiled separately
in order
'to work around the inability of Visual Basic to provide
support
'for free threading. By placing the FTP functionalilty in a
'separately compiled executable, it can run in it's own
process,
'which allows screen updates during long FTP downloads.
'
'References:
' - The HFACSFTP.exe ftp server.
'
'NOTE: See function headers for internal component
references.
'###

Implements HFACSFTP.cFTPCBK 'Implement interface

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cFTPCBK_Complete()
'
'Description: An FTP update of the HFACs database
requires the
'download of 2 files (HFACS.mdf & HFACS_log.ldf). This
function
'accepts messages from the the FTP server and notifies the
'frmFtpUpdate of progress. Specifically, of errors in
download
'and of successful download. If the first file is downloaded
'sucessfully (ErrCode = True And gIntCounter = 1), then this
'function notifies the frmFtpUpdate to begin the next
download.
'After successfully downloading both files, this function
closes
'the frmFtpUpdate form.
'
'Input:
' ErrCode - Boolean value returned from FTP Server
indicating
' success or failure of a file download.
'
'Output: None
'
'References:
' - The HFACSFTP.exe ftp server.
' - frmFtpUpdate.frm
' - HFACSMain.bas
'===
'##ModelId=3B294D27009C
Private Sub cFTPCBK_Complete(ErrCode As Boolean)

 'Determine if the first file was downloaded successfully
 If ErrCode = True And HFACSMain.gIntCounter = 1
Then
 frmFtpUpdate.GotFileDoNext
 'Determine if the first file was downloaded successfully
 ElseIf ErrCode = True And HFACSMain.gIntCounter = 2
Then
 frmFtpUpdate.GotFileLast
 'Either we are done or there was an error, so close
frmFtpUpdate
 Else
 Unload frmFtpUpdate
 End If

End Sub

 270

CLASS-cErrorLog

Option Explicit
'###
' CLASS DESCRIPTION
'###
'Class Name: cErrorLog.cls
'
'Author: Pat Flanders & Scott Tufts
'
'This writes stat us and error messages to the App.path
'ConnectionErrors.log file.
'
'References: None
'
'NOTE: See function headers for internal component
references.
'###

'***
' PROPERTIES
'***

'Integer value for each entry
Dim iErrorLog As Integer

'***
' DEFAULT NO-ARGUMENT CONSTRUCTOR
(INITIALIZE EVENT)
'***

Private Sub Class_Initialize()

 iErrorLog = FreeFile

End Sub

'***
' FUNCTIONS
'***

'===
=========================
'Function/Sub Name: ErrorLog()

'
'Description: Open the a file called ConnectionErrLog.log in
the
'application path and write error etries to it.
'
'Input:
' strMsg - Message to write to the file
'
'Output: None
'
'References:
' - HFACSMain.bas
'===
Public Sub ErrorLog(strMsg As String)

 Debug.Print strMsg
 Open HFACSMain.gStrAppPath &
"ConnectionErrLog.log" For Append As iErrorLog

 Print #iErrorLog, Now() & " : " & strMsg

 Close iErrorLog

End Sub

'===
'Function/Sub Name: ClearLog()
'
'Description: Clears the ConnectionErrLog.log.
'
'Input: None
'
'Output: None
'
'References:
' - HFACSMain.bas
'===
Public Sub ClearLog()

 Debug.Print "Error log cleared."
 Open HFACSMain.gStrAppPath &
"ConnectionErrLog.log" For Output As iErrorLog

 Print #iErrorLog, Now() & " : " & "Log Cleared"

 Close iErrorLog

End Sub

 271

CLASS-HFACSConnection

Option Explicit

'###
' CLASS DESCRIPTION
'###
'Class Name: HFACSConnection.cls
'
'Author: Pat Flanders & Scott Tufts
'
'This class is the controller class for the entire component. It
'is the only class with public members accessible from
outside of the
'component. Nothing can be manipulated without creating an
instance
'of this class and using its methods to indirectly utilitze the
'functionality of the other classes.
'
'References:
' - Microsoft Data Formating Object Library 6.0
' - Microsoft ActiveX Data Objects 2.5 Library
' - Microsoft SQLDMO Object Library
' - Microsoft Scripting Runtime
' - GIF89 1.0 (For animated GIFs on Forms)
' - The HFACSFTP.exe ftp server.
'
'NOTE: See function headers for internal component
references.
'###

'***
' PROPERTIES
'***

'Variable for type logon (prompted or not-prompted)
'##ModelId=3B294CF6035C
Private iTypeLogon As iTypeLogonConstants

'The user ID
'##ModelId=3B294CF603D8
Private sUser As String

'The user password
'##ModelId=3B294CF7003E
Private sPassword As String

'The name of the MSDE or SQL Server
'##ModelId=3B294CF7008C
Private sSvrName As String

'The name of the .mdf file containing the database.
'##ModelId=3B294CF700CB
Private sMDFName As String

'The name of the database
'##ModelId=3B294CF70119
Private sDBName As String

'The application path
'##ModelId=3B294CF70167
Private sInstDirectory As String

'Toggle to log on with/without prompt
'##ModelId=3B294CF701A5
Private sAutomaticLogon As String

'Toggle for determining if this is the first run after an update.
'##ModelId=3B294CF701F4
Private sFirstRunCheck As String

'Toggle for determining if NT authentication should be used
for
'logon attempts.
'##ModelId=3B294CF70242
Private sNTAuth As String

'The type of DB this program will represent (mil, civ, or
both).
'##ModelId=3B294CF70290
Private sTypeDB As String

'Variable to hold the value of the current connectionstring
'##ModelId=3B294CF702DE
Private sTheConnectionString As String

'Enumerations for prompt/no-prompt functions
'##ModelId=3B294CF60271
Public Enum iTypeLogonConstants
 '##ModelId=3B294CF6029F
 PROMPT = 1
 '##ModelId=3B294CF602DE
 NOPROMPT
End Enum

'***
' DEFAULT NO-ARGUMENT CONSTRUCTOR
(INITIALIZE EVENT)
'***
'##ModelId=3B294CF7031C
Private Sub Class_Initialize()

 'Set initial values for all variables by reading them from
the
 'HFACS.ini file.
 Me.readINIFile
 sUser = HFACSMain.gStrUID
 sPassword = HFACSMain.gStrPWD
 sSvrName = HFACSMain.gStrServerName
 sMDFName = HFACSMain.gStrDatabaseFileName
 sDBName = HFACSMain.gStrDatabaseName
 sInstDirectory = HFACSMain.gStrAppPath
 sAutomaticLogon = HFACSMain.gStrAutoLogon
 sFirstRunCheck = HFACSMain.gStrFirstRun
 sNTAuth = HFACSMain.gStrNTauth
 sTypeDB = HFACSMain.gStrTypeDB

 'Calculate a connection string
 sTheConnectionString =
HFACSMain.gTheConnectionString

 'Clear the error log
 Dim oTempClsErrorLog As New cErrorLog
 oTempClsErrorLog.ClearLog
 Set oTempClsErrorLog = Nothing

 272

End Sub

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Init()
'
'Description: If an instance of a class is created using the
psuedo-
'constructors from the Constructors.bas module, this function
is
'called to pass initial values, thereby mimicking the bahavior
of
'a constructor with arguments. Passed in values are all
required, but
'the Constructors.New_HFACSConnection() function
automatically sets
'passed-in values to global variable values if they are left
'blank.
'
'Input:
' sPassedInUser - The user ID
' sPassedInPassword - The user password
' sPassedInSvrName - The name of the MSDE or SQL
Server
' sPassedInMDFName - The name of the .mdf file
containing the
' database.
' sPassedInDBName - The name of the database
' sPassedInInstDirectory - The application path
' sPassedInAutomaticLogon - Toggle to log on with/without
prompt
' sPassedInFirstRunCheck - Toggle for determining if this
is the
' first run after an update.
' sPassedInNTAuth - Toggle for determining if NT
Auth.
' should be used for logon attempts.
' sPassedInTypeDB - The type of DB this program will
' represent (mil, civ, or both).'
'
'Output: None
'
'References:
' - Constructors.bas
' - HFACSMain.bas
'===
'##ModelId=3B294CF7034B
Public Sub Init(sPassedInUser As String, sPassedInPassword
As String, sPassedInSvrName As String,
sPassedInMDFName As String, sPassedInDBName As
String, sPassedInInstDirectory As String,
sPassedInAutomaticLogon As String,
sPassedInFirstRunCheck As String,
sPassedInFirstRunAfterUpdate As String, sPassedInTypeDB
As String)

 sUser = sPassedInUser
 sPassword = sPassedInPassword
 sSvrName = sPassedInSvrName
 sMDFName = sPassedInMDFName

 sDBName = sPassedInDBName
 sInstDirectory = sPassedInInstDirectory
 sAutomaticLogon = sPassedInAutomaticLogon
 sFirstRunCheck = sPassedInFirstRunCheck
 sNTAuth = sPassedInFirstRunAfterUpdate
 sTypeDB = sPassedInTypeDB

End Sub

'===
'Function/Sub Name: doConnect()
'
'Description: This procedure will make a connection to a
database
'server based on the value of iTypeLogonIn. If this
parameter is
'left blank, the class determines the appropriate type of logon
'to perform. This function also detects if it is the first time
'HFACS has been run and displays the frmWelcome.frm as
appropriate.
'After a successful logon, it sets the .ini value indicating a
'first run to "F."
'
'Input:
' iTypeLogonIn - Type of logon to perform (prompted or
' not-prompted.
'
'Output: Logon success or failure.
'
'References:
' - frmODBLogon.frm
' - frmWelcome.frm
' - MSDE.cls
' - INIFileController.cls
' - Constructors.bas
' - HFACSMain.bas
'===
'##ModelId=3B294CF8007D
Public Function doConnect(Optional iTypeLogonIn As
iTypeLogonConstants) As Boolean

 On Error GoTo StartError
 'Check for optional arguments and assign to defaults as
needed.
 If iTypeLogonIn = 0 Then
 'A no-prompt logon can can only be made on the local
machine
 'and if no password is needed.
 If sAutomaticLogon = "T" And sPassword = "" And _
 sSvrName = "(local)" Then
 iTypeLogon = NOPROMPT
 Else
 iTypeLogon = PROMPT
 End If
 Else
 iTypeLogon = iTypeLogonIn
 End If

 'Variables for testing success or failure of various
operations
 Dim bConstructorSuccess As Boolean
 Dim bTestSuccess As Boolean

 Select Case iTypeLogon

'***
 Case PROMPT 'Prompt logon

 273

 'If this is a first run, show the welcome form.
 If HFACSMain.gStrFirstRun = "T" Then
 frmWelcome.Show 1
 End If

 frmODBLogon.Show 1 'Show the logon form

 'Test for successful logon
 If gblnPromptedLogonSuccess = True Then _
 doConnect = True Else doConnect = False

 'If this was a successful first run reset the first
 'run flag. This should never change again.
 If gblnPromptedLogonSuccess = True And _
 HFACSMain.gStrFirstRun = "T" Then
 gStrFirstRun = "F"
 End If

'***
 Case NOPROMPT 'No Prompt logon

 'Create an instance of MSDE
 bConstructorSuccess =
Constructors.New_MSDE(sUser, _
 sPassword, sSvrName, sMDFName, sDBName,
_
 sInstDirectory, sAutomaticLogon,
sFirstRunCheck, _
 sNTAuth, sTypeDB)

 'Start the server and copy the database to it, if
 'needed.
 bTestSuccess = oMSDE.StartAndCopy

 'Test for success
 If bTestSuccess Then doConnect = True _
 Else doConnect = False
 Set oMSDE = Nothing

 'If this was a successful first run reset the first
 'run flag. This should never change again.
 If bTestSuccess = True And
HFACSMain.gStrFirstRun _
 = "T" Then
 gStrFirstRun = "F"
 End If

'***
 Case Else ' Default to a an error message, something is
wrong.
 MsgBox "Can't determine how to connect." & _
 " Contact your system administrator.", _
 vbCritical + vbOKOnly, "Error"
 doConnect = False

'***
 End Select

ExitSub:

 'Update the global connection string
 createConnectionString

 'If doConnect() was a success, save all the settings
 'and so the Access .adp has knows what transpired.
 If doConnect = True Then
 Constructors.New_INIFileController

 oINIFileController.writeINIentries
 Set oINIFileController = Nothing
 End If

 Exit Function

StartError:
 MsgBox "Error making a connection to HFACS." &
Chr(13) & _
 Chr(13) & "The detailed error message is: " & _
 Err.Description & Chr(13) & Chr(13) & "Error Number:
" & _
 Err.Number
 doConnect = False
 Resume ExitSub
 Resume Next
End Function

'===
'Function/Sub Name: createConnectionString()
'
'Description: This procedure updates the value of
'the global variable for the connection string that will be used
for
'all ADO connections (hfacsmain.gTheConnectionString). It
determines
'if the string should use NT authentication or regular SQL
'based on the global variable gStrNTauth.
'
'Input: None
'
'Output: success or failure of update.
'
'References:
' - Constructors.bas
' - HFACSMain.bas
'===
'##ModelId=3B294CF800BB
Private Function createConnectionString() As Boolean

 On Error GoTo StartError
 Screen.MousePointer = 11

 'Determine which type of string to create
 If HFACSMain.gStrNTauth = "T" Then
 gTheConnectionString =
"PROVIDER=SQLOLEDB.1;INTEGRATED" & _
 " SECURITY=SSPI;PERSIST SECURITY
INFO=FALSE;INITIAL CATALOG=" & _
 gStrDatabaseName & ";DATA SOURCE=" &
gStrServerName
 Else
 gTheConnectionString =
"PROVIDER=SQLOLEDB.1;PASSWORD=" & _
 gStrPWD & ";PERSIST SECURITY
INFO=TRUE;USER ID=" & _
 gStrUID & ";INITIAL CATALOG=" &
gStrDatabaseName & _
 ";DATA SOURCE=" & gStrServerName
 End If
 Screen.MousePointer = 0
 createConnectionString = True

ExitSub:
 Exit Function

StartError:

 274

 Screen.MousePointer = 0
 createConnectionString = False
 Resume ExitSub

End Function

'===
'Function/Sub Name: getUpdateFTP()
'
'Description: This function creates an instance of the
'UpdateController class, providing access to FTP updates.
'
'Input: None
'
'Output: success or failure of update.
'
'References:
' - Constructors.bas
' - UpdateController.cls
' - HFACSMain.bas
'===
'##ModelId=3B294CF800EA
Public Function getUpdateFTP() As Boolean

 On Error GoTo StartError

 'Open the FTP form by creating an UpdateController
object
 Set HFACSMain.oUpdateController = New
UpdateController
 getUpdateFTP =
HFACSMain.oUpdateController.getUpdate

ExitSub:
 'Destroy it when done
 Set HFACSMain.oUpdateController = Nothing
 Exit Function

StartError:
 getUpdateFTP = False
 Resume ExitSub

End Function

'===
'Function/Sub Name: getUpdateDisk()
'
'Description: This function creates an in stance of the
'UpdateController class, providing access to update from disk
'functionality.
'
'Input: None
'
'Output: success or failure of update.
'
'References:
' - Constructors.bas
' - UpdateController.cls
' - HFACSMain.bas
'===
'##ModelId=3B294CF80119
Public Function getUpdateDisk() As Boolean

 On Error GoTo StartError

 'Open the File Open dialog by creating an
UpdateController object
 Set HFACSMain.oUpdateController = New
UpdateController
 getUpdateDisk =
HFACSMain.oUpdateController.getUpdateDisk

ExitSub:
 'Destroy it when done
 Set HFACSMain.oUpdateController = Nothing
 Exit Function

StartError:
 getUpdateDisk = False
 Resume ExitSub

End Function

'===
'Function/Sub Name: writeINIFile()
'
'Description: This function creates an instance of the
'INIFileController class, providing methods to write to the
HFACS.ini
'file.
'
'Input: None
'
'Output: success or failure of write.
'
'References:
' - Constructors.bas
' - INIFileController.cls
' - HFACSMain.bas
'===
'##ModelId=3B294CF80138
Public Function writeINIFile() As Boolean

 On Error GoTo StartError

 'Open and write to HFACS.ini by creating an
UpdateController
 'object.
 Set HFACSMain.oINIFileController = New
INIFileController
 writeINIFile =
HFACSMain.oINIFileController.writeINIentries

ExitSub:
 'Destroy it when done
 Set HFACSMain.oINIFileController = Nothing
 Exit Function

StartError:
 writeINIFile = False
 Resume ExitSub

End Function

'===
'Function/Sub Name: readINIFile()
'
'Description: This function creates an instance of the
'INIFileController class, providing methods to read from the
HFACS.ini
'file.

 275

'
'Input: None
'
'Output: success or failure of read.
'
'References:
' - Constructors.bas
' - INIFileController.cls
' - HFACSMain.bas
'===
'##ModelId=3B294CF80167
Public Function readINIFile() As Boolean

 On Error GoTo StartError

 'Open and read HFACS.ini by creating an
UpdateController
 'object.
 Set HFACSMain.oINIFileController = New
INIFileController
 readINIFile =
HFACSMain.oINIFileController.readINIentries

ExitSub:
 'Destroy it when done
 Set HFACSMain.oINIFileController = Nothing
 Exit Function

StartError:
 readINIFile = False
 Resume ExitSub

End Function

'===
'Function/Sub Name: getSQLServerPath()
'
'Description: This function gets the path to the SQL server.
'
'Input: None
'
'Output: String value of the SQL server.
'
'References:
' - HFACSMain.bas
'===
'##ModelId=3B294CF80167
Public Function getSQLServerPath() As String

 getSQLServerPath = HFACSMain.gSQLServerPath

End Function

'***
'
' Public Property GET and LET statements follow
'
'***

'##ModelId=3B294CF801F4
Public Property Get User() As Variant
 User = gStrUID
End Property
'##ModelId=3B294CF80280
Public Property Get Password() As Variant

 Password = gStrPWD
End Property
'##ModelId=3B294CF8031C
Public Property Get ServerName() As Variant
 ServerName = gStrServerName
End Property
'##ModelId=3B294CF803A9
Public Property Get DatabaseFileName() As Variant
 DatabaseFileName = gStrDatabaseFileName
End Property
'##ModelId=3B294CF9005D
Public Property Get DatabaseName() As Variant
 DatabaseName = gStrDatabaseName
End Property
'##ModelId=3B294CF900EA
Public Property Get AppPath() As Variant
 AppPath = gStrAppPath
End Property
'##ModelId=3B294CF90186
Public Property Get AutomaticLogon() As Variant
 AutomaticLogon = gStrAutoLogon
End Property
'##ModelId=3B294CF90213
Public Property Get FirstRunCheck() As Variant
 FirstRunCheck = gStrFirstRun
End Property
'##ModelId=3B294CF902AF
Public Property Get UseNTAuth() As Variant
 UseNTAuth = gStrNTauth
End Property
'##ModelId=3B294CF9033C
Public Property Get TypeDatabase() As Variant
 TypeDatabase = gStrTypeDB
End Property
'##ModelId=3B294CF9037A
Public Property Get ConnectionString() As Variant
 ConnectionString = gTheConnectionString
End Property

'Property LET Statements
'##ModelId=3B294CF80196
Public Property Let User(ByVal vNewValue As Variant)
 sUser = vNewValue
 HFACSMain.gStrUID = vNewValue
End Property
'##ModelId=3B294CF80222
Public Property Let Password(ByVal vNewValue As
Variant)
 sPassword = vNewValue
 HFACSMain.gStrPWD = vNewValue
End Property
'##ModelId=3B294CF802BF
Public Property Let ServerName(ByVal vNewValue As
Variant)
 sSvrName = vNewValue
 HFACSMain.gStrServerName = vNewValue
End Property
'##ModelId=3B294CF8034B
Public Property Let DatabaseFileName(ByVal vNewValue
As Variant)
 sMDFName = vNewValue
 HFACSMain.gStrDatabaseFileName = vNewValue
End Property
'##ModelId=3B294CF90000
Public Property Let DatabaseName(ByVal vNewValue As
Variant)
 sDBName = vNewValue
 HFACSMain.gStrDatabaseName = vNewValue

 276

End Property
'##ModelId=3B294CF9008C
Public Property Let AppPath(ByVal vNewValue As Variant)
 sInstDirectory = vNewValue
 HFACSMain.gStrAppPath = vNewValue
End Property
'##ModelId=3B294CF90128
Public Property Let AutomaticLogon(ByVal vNewValue As
Variant)
 sAutomaticLogon = vNewValue
 HFACSMain.gStrAutoLogon = vNewValue
End Property
'##ModelId=3B294CF901B5
Public Property Let FirstRunCheck(ByVal vNewValue As
Variant)

 sFirstRunCheck = vNewValue
 HFACSMain.gStrFirstRun = vNewValue
End Property
'##ModelId=3B294CF90251
Public Property Let UseNTAuth(ByVal vNewValue As
Variant)
 sNTAuth = vNewValue
 HFACSMain.gStrNTauth = vNewValue
End Property
'##ModelId=3B294CF902DE
Public Property Let TypeDatabase(ByVal vNewValue As
Variant)
 sTypeDB = vNewValue
 HFACSMain.gStrTypeDB = vNewValue
End Property

 277

CLASS-INIFile

Option Explicit

'###
' CLASS DESCRIPTION
'###
'Class Name: INIFile.cls
'
'Author: Microsoft Corporation. Modified by Pat Flanders
&
' Scott Tufts
'
'This class creates .ini File objects used to create, delete, set,
'and get values in a standard format Microsoft .ini file. It
uses
'calls to the Windows API for efficiency.
'
'References: Windows API
'
'NOTE: See function headers for internal component
references.
'###

'***
' PROPERTIES
'***

'The name of the ini file to read
'##ModelId=3B294CFD03A9
Private msWbkName As String

'API Wrapper Code - provided by Microsoft
'##ModelId=3B294CFE0000
Private Declare Function WritePrivateProfileString Lib
"kernel32" Alias "WritePrivateProfileStringA" (ByVal
lpApplicationName As String, ByVal lpKeyName As String,
ByVal lpString As String, ByVal lpFileName As String) As
Long

'##ModelId=3B294CFE00AB
Private Declare Function GetPrivateProfileString Lib
"kernel32" Alias "GetPrivateProfileStringA" (ByVal
lpApplicationName As String, ByVal lpKeyName As Any,
ByVal lpDefault As String, ByVal lpReturnedString As
String, ByVal nSize As Long, ByVal lpFileName As String)
As Long

'##ModelId=3B294CFE0196
Private Declare Function GetWindowsDirectory Lib
"kernel32" Alias "GetWindowsDirectoryA" (ByVal lpBuffer
As String, ByVal nSize As Long) As Long

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Init()
'

'Description: If an instance of a class is created using the
psuedo-
'constructors from the Constructors.bas module, this function
is
'called to pass initial values, thereby mimicking the bahavior
of
'a constructor with arguments. Passed in values are all
required, but
'the Constructors.New_INIFile() function automatically sets
'passed-in values to global variable values if they are left
'blank.
'
'Input:
' sPassedInWorkBookName - Name of the .ini file to
manipulate
'
'Output: None
'
'References:
' - Constructors.bas
'===
'##ModelId=3B294CFE0213
Friend Sub Init(sPassedInWorkBookName As String)

 msWbkName = sPassedInWorkBookName

End Sub

'===
'Function/Sub Name: WriteToIniFile()
'
'Description: Write a section, key, and value to an .ini file.
'
'Input:
' strSection - Name of a section
' strKey - Name of a key
' strValue - Name of a key value
' strFileName - Name of the file to manipulate
'
'Output: Success or failure
'
'References: None
'===
'##ModelId=3B294CFE0251
Friend Function WriteToIniFile(strSection As String, strKey
As String, strValue As String, strFileName As String) As
Boolean

 ' Pass in name of section, key, key value, and file name.
 If WritePrivateProfileString(strSection, strKey, _
 strValue, strFileName) Then
 WriteToIniFile = True
 Else
 MsgBox "Error writing to .ini file: " & Err.LastDllError
 WriteToIniFile = False
 End If

End Function

'===
'Function/Sub Name: DeleteIniSection()
'

 278

'Description: Delete a section and all of its keys from an .ini
file.
'
'Input:
' strSection - Name of a section
' strFileName - Name of the file to manipulate
'
'Output: Success or failure
'
'References: None
'===
'##ModelId=3B294CFE02DE
Friend Function DeleteIniSection(strSection As String,
strFileName As String) As Boolean

 If WritePrivateProfileString(strSection, vbNullString, _
 vbNullString, strFileName) Then
 DeleteIniSection = True
 Else
 MsgBox "Error deleting section from .ini file: " _
 & Err.LastDllError
 DeleteIniSection = False
 End If

End Function

'===
'Function/Sub Name: DeleteIniKey()
'
'Description: Delete a key and its value from an .ini file.
'
'Input:
' strSection - Name of a section
' strKey - Name of a key
' strFileName - Name of the file to manipulate
'
'Output: Success or failure
'
'References: None
'===
'##ModelId=3B294CFE033C
Friend Function DeleteIniKey(strSection As String, strKey
As String, strFileName As String) As Boolean

 If WritePrivateProfileString(strSection, strKey, _
 vbNullString, strFileName) Then
 DeleteIniKey = True
 Else
 MsgBox "Error deleting section from .ini file: " _
 & Err.LastDllError
 DeleteIniKey = False
 End If

End Function

'===
'Function/Sub Name: GetIniFileName()
'
'Description: Return name for .ini file. Name includes name
of
'workbook file and ".ini". File path can be made the Windows
directory.
'by uncommenting the code below
'
'Input: None
'

'Output: String path (e.g. C:\windows\HFACS.ini).
'
'References: None
'===
'##ModelId=3B294CFE03A9
Friend Function GetIniFileName() As String

 Dim strWinDir As String
 Dim lngLen As Long

 ' Create null-terminated string to pass to
 ' GetWindowsDirectory.
' strWinDir = String$(255, vbNullChar)

' lngLen = Len(strWinDir)

 ' Return Windows directory.
' GetWindowsDirectory strWinDir, lngLen

 ' Truncate before first null character.
 ' strWinDir = Left(strWinDir, _
' InStr(strWinDir, vbNullChar) - 1)

 ' Return .ini file name.
 ' GetIniFileName = strWinDir & "\" & msWbkName &
".ini"

 GetIniFileName = App.Path & "\" & msWbkName & ".ini"

End Function

'===
'Function/Sub Name: ReadFromIniFile()
'
'Description: Read a value from an .ini file, given the file
name,
'section, key, and default value to return if key is not found.
'
'Input:
' strSection - Name of a section
' strKey - Name of a key
' strDefault - Default name of a key value
' strFileName - Name of the file to manipulate
'
'Output: Success or failure
'
'References: None
'===
'##ModelId=3B294CFE03D8
Friend Function ReadFromIniFile(strFileName As String,
strSection As String, strKey As String, Optional strDefault
As String = "") As String

 Dim strValue As String

 ' Fill string buffer with null characters.
 strValue = String$(255, vbNullChar)

 ' Attempt to read value. GetPrivateProfileString
 ' function returns number of characters written
 ' into string.
 If GetPrivateProfileString(strSection, strKey, _
 strDefault, strValue, Len(strValue), _
 strFileName) > 0 Then
 ' If characters have been written into string, parse string
 ' and return.

 279

 strValue = Left(strValue, InStr(strValue, vbNullChar) -
1)
 ReadFromIniFile = strValue
 Else
 ' Otherwise, return a zero-length string.

 ReadFromIniFile = strDefault
 End If

End Function

 280

CLASS-INIFileController

Option Explicit

'###
' CLASS DESCRIPTION
'###
'Class Name: INIFileController.cls
'
'Author: Pat Flanders & Scott Tufts
'
'This class creates instances of INIFile.cls used to create,
delete,
'set, and get values in a standard format Microsoft .ini file.
'
'References: None
'
'NOTE: See function headers for internal component
references.
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Init()
'
'Description: If an instance of a class is created using the
psuedo-
'constructors from the Constructors.bas module, this funct ion
is
'called to pass initial values, thereby mimicking the bahavior
of
'a constructor with arguments. Passed in values are all
required, but
'the Constructors.New_INIFileController() function
automatically sets
'passed-in values to global variable values if they are left
'blank.
'
'Input: None
'
'Output: None
'
'References: None
'===
'##ModelId=3B294D0C01A5
Friend Sub Init()

 'Do nothing. This function body is provided for future use.

End Sub

'===
'Function/Sub Name: readINIentries()
'
'Description: This function creates an instance of the
'INIFile class and reads values from the HFACS.ini file.
'
'Input:

' sFileName - The name of the .ini file to read
'
'Output: success or failure of read.
'
'References:
' - Constructors.bas
' - INIFile.cls
' - HFACSMain.bas
'===
'##ModelId=3B294D0C01D4
Friend Function readINIentries(Optional sFileName As
String) As Boolean

 'Set the MSDE class instance default values
 If IsMissing(sFileName) Then sFileName =
gINIFILENAME

 On Error GoTo StartError
 Screen.MousePointer = 11
 Debug.Print "Reading ini data . . ."

 'Create oINIFile
 Constructors.New_INIFile sFileName

 ' Get name for .ini file in the SYSTEM directory
 gStrFileName = oINIFile.GetIniFileName

 ' Read values from .ini file. Specify file name, section, and
key.
 gStrUID = oINIFile.ReadFromIniFile(gStrFileName, _
 "CONNECTION", "UID")
 gStrPWD = oINIFile.ReadFromIniFile(gStrFileName, _
 "CONNECTION", "PWD")
 gStrServerName =
oINIFile.ReadFromIniFile(gStrFileName, _
 "CONNECTION", "ServerName")
 gStrDatabaseFileName =
oINIFile.ReadFromIniFile(gStrFileName, _
 "CONNECTION", "DatabaseFileName")
 gStrDatabaseName =
oINIFile.ReadFromIniFile(gStrFileName, _
 "CONNECTION", "DatabaseName")
 gStrAppPath = oINIFile.ReadFromIniFile(gStrFileName,
_
 "CONNECTION", "InstallDir")
 gStrAutoLogon =
oINIFile.ReadFromIniFile(gStrFileName, _
 "CONNECTION", "AutoLogon")
 gStrFirstRun = oINIFile.ReadFromIniFile(gStrFileName,
_
 "CONNECTION", "FirstRun")
 gStrNTauth = oINIFile.ReadFromIniFile(gStrFileName, _
 "CONNECTION", "NTAuth")
 gStrTypeDB = oINIFile.ReadFromIniFile(gStrFileName, _
 "DBTYPE", "DBtype")

 Screen.MousePointer = 0
 readINIentries = True

ExitSub:
 Set oINIFile = Nothing
 Exit Function

StartError:

 281

 Screen.MousePointer = 0
 readINIentries = False
 Resume ExitSub

End Function

'===
'Function/Sub Name: writeINIentries()
'
'Description: This function creates an instance of the
'INIFile class and writes values to the HFACS.ini file.
'
'Input:
' sUser - The user ID
' sPassword - The user password
' sSvrName - The name of the MSDE or SQL Server
' sMDFName - The name of the .mdf file containing the
' database.
' sDBName - The name of the database
' sInstDirectory - The application path
' sAutomaticLogon - Toggle to log on with/without prompt
' sFirstRunCheck - Toggle for determining if this is the
' first run after an update.
' sNTAuth - Toggle for determining if NT Auth.
' should be used for logon attempts.
' sTypeDB - The type of DB this program will
' represent (mil, civ, or both).'
'
'Output: success or failure of write.
'
'References:
' - Constructors.bas
' - INIFile.cls
' - HFACSMain.bas
'===
'##ModelId=3B294D0C0222
Friend Function writeINIentries(Optional sUser As String,
Optional sPassword As String, Optional sSvrName As String,
Optional sMDFName As String, Optional sDBName As
String, Optional sInstDirectory As String, Optional
sAutomaticLogon As String, Optional sFirstRunCheck As
String, Optional sNTAuth As String, Optional sTypeDB As
String) As Boolean

 On Error GoTo StartError
 Screen.MousePointer = 11
 Debug.Print "Writing ini data . . ."

 'Create oINIFile
 Constructors.New_INIFile gINIFILENAME

 'Check for optional arguments and assign to defaults as
needed.
 If Trim(sSvrName) = "" Then
 sSvrName = gStrServerName
 End If
 If Trim(sUser) = "" Then
 sUser = gStrUID
 End If
 If Trim(sPassword) = "" Then
 sPassword = gStrPWD
 End If
 If Trim(sMDFName) = "" Then
 sMDFName = gStrDatabaseFileName
 End If
 If Trim(sDBName) = "" Then
 sDBName = gStrDatabaseName

 End If
 If Trim(sInstDirectory) = "" Then
 sInstDirectory = gStrAppPath
 End If
 If Trim(sAutomaticLogon) = "" Then
 sAutomaticLogon = gStrAutoLogon
 End If
 If Trim(sFirstRunCheck) = "" Then
 sFirstRunCheck = gStrFirstRun
 End If
 If Trim(sNTAuth) = "" Then
 sNTAuth = gStrNTauth
 End If
 If Trim(sTypeDB) = "" Then
 sTypeDB = gStrTypeDB
 End If

'Remove this block to allow updating of passwords in the .ini
file
'***
 'If the user is using an account other than on the local
server,
 'then it will always require a password.
 'Passwords can't be stored in the clear (like in the .ini file),
 'so never update them.

 If sPassword = "" And sSvrName = "(local)" _
 And sFirstRunCheck = "F" Then
 sAutomaticLogon = "T"
 Else
 sAutomaticLogon = "F"

 'Update the value of the global variable for password
now.
 gStrPWD = sPassword

 'Now set the local value to "" so it doesn't get written
 '"in the ini file"
 sPassword = ""

 End If

'***

 Dim writeSuccess As Boolean
 'Write the new values to the .ini file
 writeSuccess =
oINIFile.WriteToIniFile("CONNECTION", _
 "UID", sUser, gStrFileName)
 writeSuccess =
oINIFile.WriteToIniFile("CONNECTION", _
 "PWD", sP assword, gStrFileName)
 writeSuccess =
oINIFile.WriteToIniFile("CONNECTION", _
 "ServerName", sSvrName, gStrFileName)
 writeSuccess =
oINIFile.WriteToIniFile("CONNECTION", _
 "DatabaseFileName", sMDFName, gStrFileName)
 writeSuccess =
oINIFile.WriteToIniFile("CONNECTION", _
 "DatabaseName", sDBName, gStrFileName)
 writeSuccess =
oINIFile.WriteToIniFile("CONNECTION", _
 "InstallDir", sInstDirectory, gStrFileName)
 writeSuccess =
oINIFile.WriteToIniFile("CONNECTION", _
 "AutoLogon", sAutomaticLogon, gStrFileName)

 282

 writeSuccess =
oINIFile.WriteToIniFile("CONNECTION", _
 "FirstRun", sFirstRunCheck, gStrFileName)
 writeSuccess =
oINIFile.WriteToIniFile("CONNECTION", _
 "NTAuth", sNTAuth, gStrFileName)
 writeSuccess = oINIFile.WriteToIniFile("DBTYPE", _
 "DBtype", sTypeDB, gStrFileName)

 'Update global variables to the new values
 gStrUID = sUser

 '**** Un-comment this to allow updating of passwords
 'in the .ini file.
 'gStrPWD = sPassword

 gStrServerName = sSvrName
 gStrDatabaseFileName = sMDFName
 gStrDatabaseName = sDBName
 gStrAppPath = sInstDirectory

 gStrAutoLogon = sAutomaticLogon
 gStrFirstRun = sFirstRunCheck
 gStrNTauth = sNTAuth
 gStrTypeDB = sTypeDB

 writeINIentries = True

ExitSub:
 Set oINIFile = Nothing
 Screen.MousePointer = 0
 Exit Function

StartError:
 Screen.MousePointer = 0
 writeINIentries = False
 Resume ExitSub

End Function

 283

CLASS-MSDE

Option Explicit

'###
' CLASS DESCRIPTION
'###
'Class Name: MSDE.cls
'
'Author: Pat Flanders & Scott Tufts
'
'This class is responsible for starting the MSDE or SQL
server, ensuring
'that the HFACS database is installed, and managing database
updates.
'
'References:
' - Microsoft Data Formating Object Library 6.0
' - Microsoft ActiveX Data Objects 2.5 Library
' - Microsoft SQLDMO Object Library
' - Microsoft Scripting Runtime
'
' NOTE: See function headers for internal component
references.
'###

'***
' PROP ERTIES
'***

'The user ID
'##ModelId=3B294D2201D4
Private sUser As String

'The user password
'##ModelId=3B294D220222
Private sPassword As String

'The name of the MSDE or SQL Server
'##ModelId=3B294D220261
Private sSvrName As String

'The name of the .mdf file containing the database.
'##ModelId=3B294D22029F
Private sMDFName As String

'The name of the database
'##ModelId=3B294D2202EE
Private sDBName As String

'The application path
'##ModelId=3B294D22032C
Private sInstDirectory As String

'Toggle to log on with/without prompt
'##ModelId=3B294D22037A
Private sAutomaticLogon As String

'Toggle for determining if this is the first run after an update.
'##ModelId=3B294D2203B9
Private sFirstRunCheck As String

'Toggle for determining if NT authentication should be used
for
'logon attempts.
'##ModelId=3B294D23001F
Private sNTAuth As String

'The type of DB this program will represent (mil, civ, or
both).
'##ModelId=3B294D23005D
Private sTypeDB As String

'Variable for writing to the errorlog
Private oClsErrorLog As cErrorLog

'***
' DEFAULT NO-ARGUMENT CONSTRUCTOR
(INITIALIZE EVENT)
'***
'##ModelId=3B294D23009C
Private Sub Class_Initialize()

 Set oClsErrorLog = New cErrorLog

 sUser = gStrUID
 sPassword = gStrPWD
 sSvrName = gStrServerName
 sMDFName = gStrDatabaseFileName
 sDBName = gStrDatabaseName
 sInstDirectory = gStrAppPath
 sAutomaticLogon = gStrAutoLogon
 sFirstRunCheck = gStrFirstRun
 sNTAuth = gStrNTauth
 sTypeDB = gStrTypeDB

End Sub

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Init()
'
'Description: If an instance of a class is created using the
psuedo-
'constructors from the Constructors.bas module, this function
is
'called to pass initial values, thereby mimicking the bahavior
of
'a constructor with arguments. Passed in values are all
required, but
'the Constructors.New_MSDE() function automatically sets
'passed-in values to global variable values if they are left
'blank.
'
'Input:
' sPassedInUser - The user ID
' sPassedInPassword - The user password

 284

' sPassedInSvrName - The name of the MSDE or
SQL Server
' sPassedInMDFName - The name of the .mdf file
containing the
' database.
' sPassedInDBName - The name of the database
' sPassedInInstDirectory - The application path
' sPassedInAutomaticLogon - Toggle to log on
with/without prompt
' sPassedInFirstRunCheck - Toggle for determining if
this is the
' first run after an update.
' sPassedInFirstRunAfterUpdate - Toggle for determining if
NT Auth.
' should be used for logon attempts.
' sPassedInTypeDB - The type of DB this program
will
' represent (mil, civ, or both).'
'
'Output: None
'
'References:
' - Constructors.bas
' - HFACSMain.bas
'===
'##ModelId=3B294D2300CB
Friend Sub Init(sPassedInUser As String, sPassedInPassword
As String, sPassedInSvrName As String,
sPassedInMDFName As String, sPassedInDBName As
String, sPassedInInstDirectory As String,
sPassedInAutomaticLogon As String,
sPassedInFirstRunCheck As String,
sPassedInFirstRunAfterUpdate As String, sPassedInTypeDB
As String)

 sUser = sPassedInUser
 sPassword = sPassedInPassword
 sSvrName = sPassedInSvrName
 sMDFName = sPassedInMDFName
 sDBName = sPassedInDBName
 sInstDirectory = sPassedInInstDirectory
 sAutomaticLogon = sPassedInAutomaticLogon
 sFirstRunCheck = sPassedInFirstRunCheck
 sNTAuth = sPassedInFirstRunAfterUpdate
 sTypeDB = sPassedInTypeDB

End Sub

'===
'Function/Sub Name: startMSDE()
'
'Description: This procedure will start an instance SQL
Server and
'create a connection to it, thereby verifying that the specified
'server exists and that it is started. If the server is already
running,
'the error trap will exit the procedure and leave the server
running.
'
'A bug in SQL Server 2000 prevents SQLDMO from starting
a remote server
'so this code also detects the error and switches to an ADO
type
'connection to verify that the HFACS database is present on
the remote
'machine. In the case of the ADO connection, a copy the
database

'either exists or doesn't exist on the remote server. If the
ADO
'connection fails, a global flag is set so that all classes
'in the component know NOT to try to copy an instance of
the database
'to the remote server, which would generate another error.
'
'Input:
' sSvrNameIn The server to be started
' sUserIn The user ID with which to start the server
' sPasswordIn The user password
'
'Output: Success or Failure
'
'References:
' - Constructors.bas
' - HFACSMain.bas
'===
'##ModelId=3B294D2301D4
Friend Function startMSDE(Optional sSvrNameIn As String,
Optional sUserIn As String, Optional sPasswordIn As String)
As Boolean

 Screen.MousePointer = 11
 On Error GoTo StartError

 'Check for optional arguments and assign to defaults as
needed.
 If Trim(sSvrNameIn) <> "" Then
 sSvrName = sSvrNameIn
 End If
 If Trim(sUserIn) <> "" Then
 sUser = sUserIn
 End If
 If Trim(sPasswordIn) <> "" Then
 sPassword = sPasswordIn
 End If

 Dim iSlowServerCounter As Integer
 iSlowServerCounter = 1

 'Only use SQLDMO for local machine operations
 Dim iADOAttemptCounter As Integer
 iADOAttemptCounter = 0
 If Trim(sSvrName) <> "(local)" Then
 Err.Raise -2147221163
 End If

 'Declare an object for SQL server manipulation
 Dim osvr As sqldmo.SQLServer

 'Create the SQLDMO Server Object.
 Set osvr = CreateObject("SQLDMO.sqlserver")

 osvr.LoginTimeout = 20
 'Start Server.

 'Reset the no copy needed variable to false every time
 'connection is attempted.
 gblnNoCopyNeeded = False

TimeoutResume:
 'Determine connection type
 If sNTAuth = "T" Then
 osvr.LoginSecure = True
 End If
 oClsErrorLog.ErrorLog "startMSDE-Attempting to start
server. . ."

 285

 osvr.Start True, sSvrName, sUser, sPassword
 oClsErrorLog.ErrorLog "startMSDE-The server was
successfully started . . ."

StartConnect:
 oClsErrorLog.ErrorLog "startMSDE-Attempting to
connect . . ."
 'Attempt a connection.
 'If no login name, use NT Integrated security in an attempt.
 'to connect.
 If sNTAuth = "T" Then
 osvr.LoginSecure = True
 End If
 'This is the actual connection attempt.
 osvr.Connect sSvrName, sUser, sPassword
 oClsErrorLog.ErrorLog "startMSDE-Connected . . ."

 'Set the SQL Server path variable
 HFACSMain.gSQLServerPath =
osvr.Databases("master").PrimaryFilePath

 startMSDE = True

ExitSub:
 On Error GoTo 0
 On Error Resume Next
 osvr.DisConnect
 Set osvr = Nothing
 Screen.MousePointer = 0
 Exit Function

StartError:
 Screen.MousePointer = 0
 If Err.Number = -2147023840 Then
 'This error occurs when the server is already running,
 'and Server.Start is executed on NT.
 oClsErrorLog.ErrorLog "startMSDE-The server is
already started . . ."
 Resume StartConnect
 ElseIf Err.Number = -2147201024 Then
 'This error occurs when server is already started and
connected.
 oClsErrorLog.ErrorLog "startMSDE-The server is
already connected . . ."
 Resume Next
 ElseIf Err.Number = -2147023174 Then
 'This error occurs when the server cannot be found.
 oClsErrorLog.ErrorLog "startMSDE-The server could
not be found . . ."
 MsgBox "Can't find server " & sSvrName & ".",
vbCritical, _
 "Connection Failed"
 startMSDE = False
 Resume ExitSub
 ElseIf Err.Number = -2147203048 Then

 If iSlowServerCounter < 2 Then
 'Pause for 5 seconds while the server really restarts
 HFACSMain.gStrTextMessage = "A slow server was
detected. Giving extra time . . ."
 HFACSMain.gIntTimeToWait = 10
 frmWait.Show 1
 DoEvents 'Redraw screen
 iSlowServerCounter = iSlowServerCounter + 1
 Resume TimeoutResume:
 End If

 'This error occurs when the password or user ID is
wrong
 oClsErrorLog.ErrorLog "startMSDE-Incorrect password
or user ID. . ."
 MsgBox "Invalid User ID or Password.", vbCritical, _
 "Connection Failed"
 startMSDE = False
 Resume ExitSub
 ElseIf Err.Number = -2147221504 Then
 'Logon timeout occured
 oClsErrorLog.ErrorLog "startMSDE-A harmless Login
timeout occurred . . ."
 Resume Next
 ElseIf Err.Number = -2147200991 Then
 'This error occurs when replacing the database from a
file. It is
 'caused because a current connection exists and NT
authentication is
 'being attempted to stop the server.
 oClsErrorLog.ErrorLog "startMSDE-A harmless lost
connection error occurred . . ."
 Resume Next

 'Or -2147023174

 ElseIf Err.Number = -2147221163 Or -2147024891 Then
 'This error occurs when attempting to log onto server
other than the
 'local machine using SQLDMO.sqlserver. To work
around this switch
 'to an ADO type connectio n.

 oClsErrorLog.ErrorLog "SQLDMO connection failed.
Trying ADO . . ."

 iADOAttemptCounter = iADOAttemptCounter + 1

 'Try ADO 10 times, then give up
 If iADOAttemptCounter = 10 Then
 MsgBox "Tried 10 times"
 GoTo FailedADO
 End If

 Dim oRemoteConnection As ADODB.Connection
 Set oRemoteConnection = New ADODB.Connection
 On Error GoTo FailedADO

 If sNTAuth = "T" Then
 oRemoteConnection.ConnectionString = _
 "PROVIDER=SQLOLEDB.1;INTEGRATED
SECURITY=SSPI;" & _
 "PERSIST SECURITY=FALSE;INITIAL
CATALOG=" & _
 sDBName & ";DATA SOURCE=" & sSvrName
'& ";Network Library=dbmssocn"
 Else
 oRemoteConnection.ConnectionString = _
 "PROVIDER=SQLOLEDB.1;PASSWORD=" _
 & sPassword & ";PERSIST SECURITY
INFO=TRUE;USER ID=" & _
 sUser & ";INITIAL CATALOG=" & sDBName _
 & ";DATA SOURCE=" & sSvrName '&
";Network Library=dbmssocn"
 End If

 'Open the connection
 oRemoteConnection.Open
 oRemoteConnection.Close

 286

 'Destroy the connection since you verified it works
 Set oRemoteConnection = Nothing

 'If this connection exists, then the HFACS database
exists
 'on the remote machine and no copy is needed, so set the
 'global flag to true.
 gblnNoCopyNeeded = True

 startMSDE = True
 Resume ExitSub
 Else 'Unknown error
FailedADO:
 oClsErrorLog.ErrorLog "Error: " & Err.Description & ",
Number: " & Err.Number
 MsgBox "Destination host unreachable. The server may
not " & _
 "be started or you may have to build a System DSN." &
Chr(13) & Chr(13) & _
 "The detailed error message is: MSDE - " &
Err.Description & _
 Chr(13) & Chr(13) & "Error Number: " & Err.Number,
_
 vbOKOnly + vbCritical, "Connection Failed"
 startMSDE = False
 End If
 Resume ExitSub

End Function

'===
'Function/Sub Name: copyMDF()
'
'Description: This procedure will check for the database on a
local
'Server. If the database does not exist, it will then copy and
install
'the HFACS database from the application path to the Server
data
'directory making a backup copy of the old database in case
an error
'occurs and a restore is neeeded.
'
'The last two copies of the database are kept in the server data
'directory in an attempt to prevent data loss.
'
'Input:
' bPerformCopy - Toggle to actually perform a copy or just
see if
' one is needed
' sSvrNameIn - The server to start
' sUserIn - The user ID with which to st art the server
' sPasswordIn - The user password
' sMDFNameIn - The name of the MSDE Database to be
copied
' sDBNameIn - The name of the database
'
'Output: Success or Failure
'
'References:
' - Constructors.bas
' - HFACSMain.bas
'===
'##ModelId=3B294D230242
Friend Function copyMDF(Optional bPerformCopy As
Boolean = True, Optional sSvrNameIn As String, Optional

sUserIn As String, Optional sPasswordIn As String, Optional
sMDFNameIn As String, Optional sDBNameIn As String)
As Boolean

 Screen.MousePointer = 11
 On Error GoTo StartError
 Debug.Print
 oClsErrorLog.ErrorLog "copyMDF-Copy routine initiated
. . ."
 oClsErrorLog.ErrorLog "copyMDF-Creating new
SQLDMO object . . ."

 'Check for optional arguments and assign to defaults as
needed.
 If Trim(sSvrNameIn) <> "" Then
 sSvrName = sSvrNameIn
 End If
 If Trim(sUserIn) <> "" Then
 sUser = sUserIn
 End If
 If Trim(sPasswordIn) <> "" Then
 sPassword = sPasswordIn
 End If
 If Trim(sMDFNameIn) <> "" Then
 sMDFName = sMDFNameIn
 End If
 If Trim(sDBNameIn) <> "" Then
 sDBName = sDBNameIn
 End If

 'Declare an object for hard disk file manipulation
 Dim FSO As Scripting.FileSystemObject

 'Declare an object for SQL server manipulation
 Dim osvr As sqldmo.SQLServer

 'Declare a variable to hold the return value from the
 'attachDB call
 Dim strMessage As String

 'For looping through databases on the server
 Dim db As Database

 'Declare an flag for determining if the database was
 'found on the server
 Dim fDataBaseFlag As Boolean

 'The drive names used in FSO.Copyfile and
oSvr.AttachDB
 'need to match the locations for Program Files and MSDE
on the
 'user's machine.

 'Initialize variables
 Set FSO = CreateObject("Scripting.FileSystemObject")
 Set osvr = CreateObject("sqldmo.sqlserver")
 fDataBaseFlag = False

 'Attempt a connection.
 oClsErrorLog.ErrorLog "copyMDF-Attempting to
connect . . ."
 'If no login name, use NT Integrated security in an attempt.
 'to connect.
 If sNTAuth = "T" Then
 osvr.LoginSecure = True
 End If

 osvr.Connect sSvrName, sUser, sPassword

 287

 'Check for database on local MSDE Server
 'by looping through all database names on the local MSDE
Server.
 For Each db In osvr.Databases
 If db.Name = sDBName Then 'The database exists.
 oClsErrorLog.ErrorLog "copyMDF-The database
exists - " & _
 "No copy will be performed . . ."
 fDataBaseFlag = True
 copyMDF = True
 Exit For 'Get out of loop.
 End If
 Next

 If fDataBaseFlag = False Then 'There is no database name
match.

 'Check to make sure the operation is being attempted on
 'a local server.
 If sSvrName <> "(local)" Then
 oClsErrorLog.ErrorLog "copyMDF-Failed check. "
& _
 "Can 't perform operation on remote server . . ."
 Screen.MousePointer = 0
 MsgBox "The server you are trying to connect to
exists," & _
 " but it is not the local machine or you have not " &
_
 "logged on as '(local)'. You be logged on to " & _
 "server '(local)' to perform this operation." & _
 Chr(13) & Chr(13) & "This program cannot create
a " & _
 "database on a machine other than the local
machine.", _
 vbCritical, "Connection Failed"
 Screen.MousePointer = 11
 copyMDF = False
 GoTo ExitSub
 End If
 oClsErrorLog.ErrorLog "copyMDF-Local machine is
the SQL server." & _
 " Continuing . . ."

 'Copy file to data folder.
 If bPerformCopy = True Then
 oClsErrorLog.ErrorLog "copyMDF-The HFACS
database was not found . . ."

 'We already ascertained that the db does not exist,
 'but the program can't overwrite the .mdf or _log.ldf
 'files if they exist, so if they exist, rename them
 'as BKP -1 and BKP-2, respectively. Permanently
 'delete any existing copy of a BKP-2 file.

 'Turn off error checking for the disk manipulation
 On Error GoTo 0
 On Error Resume Next
 FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
 "BKP -1-" & sMDFName,
osvr.Databases("master").PrimaryFilePath & _
 "BKP -2-" & sMDFName, True
 FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
 sMDFName,
osvr.Databases("master").PrimaryFilePath & _
 "BKP -1-" & sMDFName, True

 FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
 "BKP -1-" & Left(sMDFName, (Len(sMDFName) -
4)) & "_log.ldf", _
 osvr.Databases("master").PrimaryFilePath & "BKP -
2-" & _
 Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True
 FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
 Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", _
 osvr.Databases("master").PrimaryFilePath & "BKP -
1-" & _
 Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True
 FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
 sMDFName, True
 FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
 Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True

 'Now it's safe to copy the database from the
application
 'path to the server directory. Database updates (from
both
 'ftp and disks, are always first placed (copied or
downloaded)
 'into the application path -- then they are copied to the
 'server data directory by this function.
 FSO.CopyFile sInstDirectory & sMDFName, _
 osvr.Databases("master").PrimaryFilePath &
sMDFName, True
 FSO.CopyFile sInstDirectory & Left(sMDFName,
(Len(sMDFName) - 4)) _
 & "_log.ldf",
osvr.Databases("master").PrimaryFilePath _
 & Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True
 oClsErrorLog.ErrorLog "copyMDF-Function call
specified a copy was" & _
 " to be performed . . ."
 oClsErrorLog.ErrorLog "copyMDF-Copying " &
sDBName & " from " & _
 sInstDirectory & sMDFName & "to " & _
 osvr.Databases("master").PrimaryFilePath & _
 sMDFName & " . . ."

 'Attach the new .mdf file to the server.
 On Error GoTo 0
 On Error GoTo StartError
 strMessage = osvr.AttachDB(sDBName, "[" & _
 osvr.Databases("master").PrimaryFilePath & _
 sMDFName & "]")
 oClsErrorLog.ErrorLog "copyMDF-" & strMessage

 'This is a CRITICAL step that catches a failure to
attach
 'a new file.
 If Me.databaseExists = True Then
 copyMDF = True
 Else
 copyMDF = False
 End If

 Else

 288

 copyMDF = True
 oClsErrorLog.ErrorLog "copyMDF-Function call
specified not to copy" & _
 " the database. Ending . . ."
 End If
 End If

ExitSub:
 'Cleanup
 osvr.DisConnect
 oClsErrorLog.ErrorLog "copyMDF-Destroying the objects
created" & _
 " for copying hfacs.mdf . . ."
 Set osvr = Nothing
 Set FSO = Nothing
 Screen.MousePointer = 0
Exit Function

StartError:
 Screen.MousePointer = 0
 If Err.Number = -2147203048 Then
 'This error occurs when the password or user ID is
wrong
 oClsErrorLog.ErrorLog "copyMDF-Incorrect
password or user ID. . ."
 MsgBox "Invalid User ID or Password.", vbCritical, _
 "Connection Failed"
 copyMDF = False
 Resume ExitSub
 End If
 If Err.Number = -2147221504 Then
 'This error occurs when the user tries to connect a
 'SQL 2K file to a SQL 7.0 compatible engine.
 oClsErrorLog.ErrorLog "copyMDF - This is a SQL
2K compatible file . . ."
 MsgBox "The file you are trying to attach is in SQL" &
_
 " 2000 format. The database engine on this machine is"
& _
 " configured for SQL 7.0.", vbCritical, "Connection
Failed"
 copyMDF = False
 Resume ExitSub
 End If
 'Unknown error
 oClsErrorLog.ErrorLog "Error: " & Err.Description & ",
Number: " & Err.Number
 MsgBox "Error copying database." & Chr(13) & Chr(13)
& _
 "The detailed error message is: " & Err.Description & _
 Chr(13) & Chr(13) & "Error Number: " & Err.Number, _
 vbOKOnly + vbCritical, "Copy Failed"
 copyMDF = False
 Resume ExitSub

End Function

'===
'Function/Sub Name: dropDB()
'
'Description: This procedure will check for the database on
the
'Server. If the database exists it will then permanently drop it.
'A normal drop specifies the bKillDBFiles paramater as
False, so
'A backup of the database is created before dropping it.

'Passing a value of true for this parameter drops the database
with
'no backup.
'
'Input:
' bKillDBFiles - Toggle to drop the database without
backing-up
' sSvrNameIn - The server to start
' sUserIn - The user ID with which to start the server
' sPasswordIn - The user password
' sMDFNameIn - The name of the MSDE Database to be
copied
' sDBNameIn - The name of the database
'
'Output: Success or Failure
'
'References:
' - Constructors.bas
' - HFACSMain.bas
'==
'##ModelId=3B294D2302FD
Friend Function dropDB(Optional bKillDBFiles As Boolean
= False, Optional sSvrNameIn As String, Optional sUserIn
As String, Optional sP asswordIn As String, Optional
sMDFNameIn As String, Optional sDBNameIn As String)
As Boolean

 Screen.MousePointer = 11
 On Error GoTo StartError
 Debug.Print
 oClsErrorLog.ErrorLog "dropDB-Drop routine was
initiated . . ."
 oClsErrorLog.ErrorLog "dropDB-Creating new
SQLDMO object . . ."

 'Check for optional arguments and assign to defaults as
needed.
 If Trim(sSvrNameIn) <> "" Then
 sSvrName = sSvrNameIn
 End If
 If Trim(sUserIn) <> "" Then
 sUser = sUserIn
 End If
 If Trim(sPasswordIn) <> "" Then
 sPassword = sPasswordIn
 End If
 If Trim(sMDFNameIn) <> "" Then
 sMDFName = sMDFNameIn
 End If
 If Trim(sDBNameIn) <> "" Then
 sDBName = sDBNameIn
 End If

 'Declare an object for hard disk file manipulation
 Dim FSO As Scripting.FileSystemObject

 'Declare an object for SQL server manipulation
 Dim osvr As sqldmo.SQLServer

 'Declare a variable to hold the return value from the
 'drop call
 Dim strMessage As String

 'For looping through databases on the server
 Dim db As Variant

 'Declare an flag for determining if the database
 'was found on the server

 289

 Dim fDataBaseFlag As Boolean

 'Initialize variables
 Set FSO = CreateObject("Scripting.FileSystemObject")
 Set osvr = CreateObject("sqldmo.sqlserver")
 fDataBaseFlag = False

 'Attempt a connection.
 oClsErrorLog.ErrorLog "dropDB-Attempting to connect . .
."
 'If no login name, use NT Integrated security in an attempt.
 'to connect.
 If sNTAuth = "T" Then
 osvr.LoginSecure = True
 End If
 osvr.Connect sSvrName, sUser, sPassword

 'Check to make sure the operation is being attempted on
 'a local server.
 If sSvrName <> "(local)" Then
 dropDB = False
 oClsErrorLog.ErrorLog "dropDB-Failed check. Can't
perform " & _
 "operation on remote server . . ."
 Screen.MousePointer = 0
 MsgBox "The server you are trying to connect to
exists," & _
 " but it is not the local machine or you have not
logged" & _
 " on as '(local)'. You be logged on to server '(local)'"
& _
 " to perform this operation." & Chr(13) & Chr(13) & _
 "This program cannot create a database on a machine
other" & _
 " than the local machine.", vbCritical + vbOKOnly, _
 "Connection Failed"
 Screen.MousePointer = 11
 GoTo ExitSub
 End If

 oClsErrorLog.ErrorLog "dropDB-Local machine is the
SQL server. Continuing . . ."

 'Check for database on local MSDE Server
 'by looping through all database names on the local MSDE
Server.
 For Each db In osvr.Databases
 If db.Name = sDBName Then 'The database exists.
 oClsErrorLog.ErrorLog "dropDB-The database exists
on the server . . ."
 fDataBaseFlag = True
 Exit For 'Get out of loop.
 End If
 Next

 If fDataBaseFlag = True Then 'There is a database name
match.
 'drop the database.
 oClsErrorLog.ErrorLog "dropDB-The HFACS database
was found . . ."
 oClsErrorLog.ErrorLog "dropDB-Dropping " &
sDBName & " from " & _
 sSvrName & " . . ."
 strMessage = osvr.DetachDB(sDBName, True)

 'Print any error messages from the server

 oClsErrorLog.ErrorLog "dropDB-" & strMessage

 'NOTE: Uncomment this to see the SQL drop server
messages
 'MsgBox strMessage

 'Check to make sure t he drop was successful.
 If Me.databaseExists = True Then
 Screen.MousePointer = vbDefault
 MsgBox "There was an error dropping the existing"
& _
 " database file from the database." & Chr(13) & _
 Chr(13) & "The new file will not be installed.", _
 vbExclamation + vbOKOnly, "Database Drop
Failed"
 dropDB = False
 GoTo ExitSub
 End If

 'Turn off error checking for the disk manipulation
 On Error GoTo 0
 On Error Resume Next
 If bKillDBFiles = True Then
 'The user specified to physically delete the .mdf files
 'from the server with no backup.
 oClsErrorLog.ErrorLog "dropDB-Deletion of files
was requested as" & _
 " well. Deleting files . . ."
 FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
 sMDFName, True
 FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
 Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True
 dropDB = True
 Else
 '*** NOTE: This functionality is turned off because
the copy
 'routine accomplishes the backing of files, but this
code is
 'left here for reuse purposes. Just uncomment to use
this
 'funtionality.

 'Otherwise rename the old ones
 'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
 '"BKP-1-" & sMDFName,
osvr.Databases("master").PrimaryFilePath _
 '& "BKP-2-" & sMDFName, True
 'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
 'sMDFName,
osvr.Databases("master").PrimaryFilePath & _
 '"BKP-1-" & sMDFName, True
 'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
 '"BKP-1-" & Left(sMDFName, (Len(sMDFName)
- 4)) & _
 '"_log.ldf",
osvr.Databases("master").PrimaryFilePath & _
 '"BKP-2-" & Left(sMDFName, (Len(sMDFName)
- 4)) & _
 '"_log.ldf", True
 'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _

 290

 'Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", _
 'osvr.Databases("master").PrimaryFilePath &
"BKP -1-" & _
 'Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True
 'FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
 'sMDFName, True
 'FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
 'Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True
 dropDB = True
 End If
 On Error GoTo 0
 On Error GoTo StartError

 Else

 oClsErrorLog.ErrorLog "dropDB-The HFACS database
was not found, so " & _
 "no drop is necessary . . ."
 'Turn off error checking for the disk manipulation
 On Error GoTo 0
 On Error Resume Next
 If bKillDBFiles = True Then
 'Physically delete the .mdf files from the server
 oClsErrorLog.ErrorLog "dropDB-Deletion of files
was requested, however." & _
 " Deleting files . . ."
 FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
 sMDFName, True
 FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
 Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True
 Else
 '*** NOTE: This functionality is turned off because
the copy routine
 'accomplishes the backing of files, but this code is left
here for
 'reuse purposes. Just uncomment to use this
funtionality.

 'Otherwise rename the old ones
 'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
 '"BKP -1-" & sMDFName,
osvr.Databases("master").PrimaryFilePath _
 '& "BKP -2-" & sMDFName, True
 'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
 'sMDFName,
osvr.Databases("master").PrimaryFilePath & _
 '"BKP -1-" & sMDFName, True
 'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
 '"BKP -1-" & Left(sMDFName, (Len(sMDFName) -
4)) & _
 '"_log.ldf",
osvr.Databases("master").PrimaryFilePath & _
 '"BKP -2-" & Left(sMDFName, (Len(sMDFName) -
4)) & _
 '"_log.ldf", True
 'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _

 'Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", _
 'osvr.Databases("master").PrimaryFilePath &
"BKP -1-" & _
 'Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True
 'FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
 'sMDFName, True
 'FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
 'Left(sMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True
 End If
 On Error GoTo 0
 On Error GoTo StartError
 dropDB = True
 End If

ExitSub:
 osvr.DisConnect
 oClsErrorLog.ErrorLog "dropDB-Destroying the objects
created for dropping" & _
 " the database . . ."
 Set osvr = Nothing
 Set FSO = Nothing
 Screen.MousePointer = 0
Exit Function

StartError:
 Screen.MousePointer = 0
 If Err.Number = -2147203048 Then
 'This error occurs when the password or user ID is
wrong
 oClsErrorLog.ErrorLog "dropDB-Incorrect password
or user ID. . ."
 MsgBox "Invalid User ID or Password.", vbCritical, _
 "Connection Failed"
 dropDB = False
 Resume ExitSub
 End If
 'Unknown Error
 oClsErrorLog.ErrorLog "Error: " & Err.Description & ",
Number: " & Err.Number
 MsgBox "Error dropping database." & Chr(13) & Chr(13)
& _
 "The detailed error message is: " & Err.Description &
Chr(13) _
 & Chr(13) & "Error Number: " & Err.Number, _
 vbOKOnly + vbCritical, "Database Drop Failed"
 dropDB = False
 Resume ExitSub

End Function

'===
'Function/Sub Name: databaseExists()
'
'Description: This procedure will connect to a SQL server
that is
'already running and determine if a database exists.
'
'Input:
' sSvrNameIn - The server to start
' sUserIn - The user ID with which to start the server
' sPasswordIn - The user password

 291

' sMDFNameIn - The name of the MSDE Database to be
copied
' sDBNameIn - The name of the database
'
'Output: Success or Failure
'
'References:
' - Constructors.bas
' - HFACSMain.bas
'===
'##ModelId=3B294D2303A9
Friend Function databaseExists(Optional sSvrNameIn As
String, Optional sUserIn As String, Optional sPasswordIn As
String, Optional sMDFNameIn As String, Optional
sDBNameIn As String) As Boolean

 Screen.MousePointer = 11
 On Error GoTo StartError
 Debug.Print
 oClsErrorLog.ErrorLog "databaseExists-Connect
routine was initiated . . ."
 oClsErrorLog.ErrorLog "databaseExists-Creating new
SQLDMO object . . ."

 'Check for optional arguments and assign to defaults as
needed.
 If Trim(sSvrNameIn) <> "" Then
 sSvrName = sSvrNameIn
 End If
 If Trim(sUserIn) <> "" Then
 sUser = sUserIn
 End If
 If Trim(sPasswordIn) <> "" Then
 sPassword = sPasswordIn
 End If
 If Trim(sMDFNameIn) <> "" Then
 sMDFName = sMDFNameIn
 End If
 If Trim(sDBNameIn) <> "" Then
 sDBName = sDBNameIn
 End If

 'Declare an object for SQL server manipulation
 Dim osvr As sqldmo.SQLServer

 'For looping through databases on the server
 Dim db As Variant

 'Declare an flag for determining if the database was found
on
 'the server
 Dim fDataBaseFlag As Boolean

 'Initialize variables
 Set osvr = CreateObject("SQLDMO.sqlserver")
 fDataBaseFlag = False

 'Attempt a connection.
 oClsErrorLog.ErrorLog "databaseExists-Attempting to
connect . . ."
 'If no login name, use NT Integrated security in an attempt.
 'to connect.
 If sNTAuth = "T" Then
 osvr.LoginSecure = True
 End If
 osvr.Connect sSvrName, sUser, sPassword

 'Check for database on Server

 'by looping through all database names on the local MSDE
Server.
 For Each db In osvr.Databases
 If db.Name = sDBName Then 'The database exists.
 oClsErrorLog.ErrorLog "databaseExists-The
database exists . . ."
 fDataBaseFlag = True
 databaseExists = True
 Exit For 'Get out of loop.
 End If
 Next

 If fDataBaseFlag = False Then 'There is no database name
match.
 databaseExists = False
 End If

ExitSub:
 'Turn off error checking so that errors in destroying objects
 'don't cause an endless loop.
 On Error GoTo 0
 On Error Resume Next
 osvr.DisConnect
 oClsErrorLog.ErrorLog "databaseExists-Destroying the
objects created for" & _
 " checking database existence . . ."
 Set osvr = Nothing
 Screen.MousePointer = 0
Exit Function

StartError:
 Screen.MousePointer = 0
 If Err.Number = -2147203048 Then
 'This error occurs when the password or user ID is
wrong
 oClsErrorLog.ErrorLog "databaseExists-Incorrect
password or user ID . . ."
 MsgBox "Invalid User ID or P assword.", vbCritical, _
 "Connection Failed"
 databaseExists = False
 Resume ExitSub
 Else
 'Unknown error. Don't show any message box
 oClsErrorLog.ErrorLog "Error: " & Err.Description & ",
Number: " & Err.Number
 databaseExists = False
 Resume ExitSub
 End If

End Function

'===
'Function/Sub Name: StartAndCopy()
'
'Description: This procedure combines the functionality of
the
'startMSDE() and copyMDF() functions with the added
ability to
'determine if a copy is needed based upon the results of the
'startMSDE() call. For example, if a remote connection is
attempted
'and succeeds, startMSDE() will return True, but no copy will
be
'neccessary.
'
'In addition, this function detects if a copy failed and will
'attempt to repair the database by offering an option to restore

 292

'an old copy of the database. This is useful when called from
'a failed FTP update attempt.
'
'Input:
' sSvrNameIn - The server to st art
' sUserIn - The user ID with which to start the server
' sPasswordIn - The user password
' sMDFNameIn - The name of the MSDE Database to be
copied
' sDBNameIn - The name of the database
'
'Output: Success or Failure
'
'References:
' - Constructors.bas
' - HFACSMain.bas
'===
'##ModelId=3B294D24005D
Friend Function StartAndCopy(Optional sSvrNameIn As
String, Optional sUserIn As String, Optional sPasswordIn As
String, Optional sMDFNameIn As String, Optional
sDBNameIn As String) As Boolean

 'Check for optional arguments and assign to defaults as
needed.
 If Trim(sSvrNameIn) <> "" Then
 sSvrName = sSvrNameIn
 End If
 If Trim(sUserIn) <> "" Then
 sUser = sUserIn
 End If
 If Trim(sPasswordIn) <> "" Then
 sPassword = sPasswordIn
 End If
 If Trim(sMDFNameIn) <> "" Then
 sMDFName = sMDFNameIn
 End If
 If Trim(sDBNameIn) <> "" Then
 sDBName = sDBNameIn
 End If

 'Test result variables
 Dim bTestSuccess1 As Boolean
 Dim bTestSuccess2 As Boolean

 bTestSuccess1 = Me.startMSDE()

 'If logging to a remote machine, the startMSDE will verify
 'that the database exists and set this flag. No copy will
 'be needed, because the database exists on the remote
server.
 If gblnNoCopyNeeded = True Then StartAndCopy = _
 True: Exit Function

 'Only copy if the start was a success
 If bTestSuccess1 = True Then
 bTestSuccess2 = Me.copyMDF()
 End If

 DoEvents 'Redraw the screen

 'if the copy failed, attempt restore of old DB.
 If bTestSuccess2 = False Then
 oClsErrorLog.ErrorLog "StartAndCopy-Trying to restore
the old DB . . ."

 'Don't try to restore if this is the first time DB has
 'been run
 If HFACSMain.gStrFirstRun = "T" Then
 StartAndCopy = False
 Exit Function
 End If

 If Me.restoreOldDB = False Then
 StartAndCopy = False
 Exit Function
 Else
 StartAndCopy = True
 Exit Function
 End If
 Else
 StartAndCopy = True
 End If

End Function

'===
'Function/Sub Name: restoreOldDB()
'
'Description: This function is called when a copy operation
fails and
'there is no HFACS database file attached to the local server.
Once
'called, this function prompts the user to restore the old
database.
'If the user opts to restore the database, a restore is first
attempted
'using the current logon information. If this attempt fails, a
second
'attempt is made as a "last -ditch" effort using the "sa" logon
and
'no password. If both attempts fail, the database will not be
installed
'on the local server and the HFACS program will not
function. System
'Administrator assistance will be required to attach a copy of
the
'database.
'
'Input:
' sSvrNameIn - The server to start
' sUserIn - The user ID with which to start the server
' sPasswordIn - The user password
' sMDFNameIn - The name of the MSDE Database to be
copied
' sDBNameIn - The name of the database
'
'Output: Success or Failure
'
'References:
' - Constructors.bas
' - HFACSMain.bas
'===
'##ModelId=3B294D2400FA
Friend Function restoreOldDB(Optional sSvrNameIn As
String, Optional sUserIn As String, Optional sPasswordIn As
String, Optional sMDFNameIn As String, Optional
sDBNameIn As String) As Boolean

 On Error GoTo StartError

 'Check for optional arguments and assign to defaults as
needed.

 293

 If Trim(sSvrNameIn) <> "" Then
 sSvrName = sSvrNameIn
 End If
 If Trim(sUserIn) <> "" Then
 sUser = sUserIn
 End If
 If Trim(sPasswordIn) <> "" Then
 sPassword = sPasswordIn
 End If
 If Trim(sMDFNameIn) <> "" Then
 sMDFName = sMDFNameIn
 End If
 If Trim(sDBNameIn) <> "" Then
 sDBName = sDBNameIn
 End If

 Dim response As Variant
 response = MsgBox("HFACS was unable to install a new
update" & _
 " or something is preventing it from finding the
database" & _
 " on the local machine." & Chr(13) & Chr(13) & _
 "If you recieved this message after trying to perform an"
& _
 " update via disk or FTP, then you should revert to the"
& _
 " previous copy of the database." & Chr(13) & Chr(13)
& _
 "Do you want to revert to the previous copy of the
database?", _
 vbYesNo + vbDefaultButton1 + vbExclamation, _
 "Problem Finding Database")

 If response = vbYes Then 'Attempt to restore the old DB

 'Declare an object for hard disk file manipulation
 Dim FSO As Scripting.FileSystemObject
 Set FSO = CreateObject("Scripting.FileSystemObject")

 DoEvents 'Redraw the screen

 'Attmpt to revert to the old copy of the database
 Screen.MousePointer = vbHourglass

 'Turn off error checking for disk manipulation
 On Error GoTo 0
 On Error Resume Next
 FSO.DeleteFile HFACSMain.gStrAppPath & _
 HFACSMain.gStrDatabaseFileName, True
 FSO.CopyFile HFACSMain.gStrAppPath &
sMDFName & _
 ".old", HFACSMain.gStrAppPath & sMDFName,
True
 FSO.DeleteFile HFACSMain.gStrAppPath & _
 Left(HFACSMain.gStrDatabaseFileName, _
 (Len(sMDFName) - 4)) & "_log.ldf", True
 FSO.CopyFile HFACSMain.gStrAppPath & _
 Left(HFACSMain.gStrDatabaseFileName, _
 (Len(HFACSMain.gStrDatabaseFileName) - 4)) & _
 "_log.ldf.old", HFACSMain.gStrAppPath & _
 Left(HFACSMain.gStrDatabaseFileName, _
 (Len(HFACSMain.gStrDatabaseFileName) - 4)) & _
 "_log.ldf", True
 On Error GoTo 0
 On Error GoTo StartError

 'Now try to copy it to the Server
 Dim bTestSuccess As Boolean

 bTestSuccess = Me.copyMDF
 If bTestSuccess = False Then

 'If that didn't work, then revert to the original
 'system settings and try one last time.
 HFACSMain.gStrUID = "sa"
 HFACSMain.gStrPWD = ""
 HFACSMain.gStrServerName = "(local)"
 HFACSMain.gStrDatabaseFileName =
"HFACS.mdf"
 HFACSMain.gStrDatabaseName = "HFACS"
 HFACSMain.gStrAppPath =
HFACSMain.gStrAppPath
 HFACSMain.gStrAutoLogon = "F"
 HFACSMain.gStrFirstRun = "F"
 HFACSMain.gStrNTauth = "F"
 HFACSMain.gStrTypeDB =
HFACSMain.gStrTypeDB

 Dim bLastTryWDefaultSettings As Boolean
 bLastTryWDefaultSettings = Me.copyMDF(True,
"(local)", _
 "sa", , "HFACS.mdf", "HFACS")

 'If that failed inform the user of the problem.
 If bLastTryWDefaultSettings = False Then
 Screen.MousePointer = vbDefault
 MsgBox "A fatal error has occured and HFACS
has " & _
 "become corrupted." & Chr(13) & Chr(13) & _
 "Please contact your system administrator to " & _
 "replace the corrupted files.", vbOKOnly, _
 "Fatal Error - HFACS Is Corrupted"
 restoreOldDB = False
 GoTo ExitSub
 Else
 restoreOldDB = True
 GoTo ExitSub
 End If

 Else
 restoreOldDB = True
 End If

 Else
 'Just exit.
 restoreOldDB = False
 Exit Function

 End If

ExitSub:
 DoEvents 'Redraw the screen
 Screen.MousePointer = vbDefault
 Set FSO = Nothing

Exit Function

StartError:
 Screen.MousePointer = 0
 'Unknown error
 oClsErrorLog.ErrorLog "Error: " & Err.Description & ",
Number: " & Err.Number
 MsgBox "An error occurred restoring the database." &
Chr(13) & _
 Chr(13) & "The detailed error message is: " & _
 Err.Description & Chr(13) & Chr(13) & _

 294

 "Error Number: " & Err.Number, _
 vbOKOnly + vbCritical, "Error Restoring Database"
 restoreOldDB = False
 Resume ExitSub

End Function

'===
'Function/Sub Name: restartMSDE()
'
'Description: Before an .mdf database file can be dropped
and a new
'file attached, all users must be logged off. This function
stops and
'restarts the server effectively ensuring all users are logged
off
'and that the server services are refreshed. This function can
only
'be used in conjunction with an update operation (either disk
or FTP)
'as it also copies the file from the download/temp copy
directory
'(which is the application path) to the server data directory.
This
'copy can only be performed when the server is stopped.
'
'Input:
' sSvrNameIn - The server to start
' sUserIn - The user ID with which to start the server
' sPasswordIn - The user password
'
'Output: Success or Failure
'
'References:
' - Constructors.bas
' - HFACSMain.bas
' - frmWait.frm
'===
'##ModelId=3B294D240196
Friend Function restartMSDE(Optional sSvrNameIn As
String, Optional sUserIn As String, Optional sPasswordIn As
String) As Boolean

 Screen.MousePointer = 11
 On Error GoTo StartError

 'Check for optional arguments and assign to defaults as
needed.
 If Trim(sSvrNameIn) <> "" Then
 sSvrName = sSvrNameIn
 End If
 If Trim(sUserIn) <> "" Then
 sUser = sUserIn
 End If
 If Trim(sPasswordIn) <> "" Then
 sPassword = sPasswordIn
 End If

 '*******************
 'Remove this to allow restarting of other servers than local.
 sSvrName = "(local)"

 'Declare an object for SQL server manipulation
 Dim osvr As sqldmo.SQLServer

 'Create the SQLDMO Server Object.

 Set osvr = CreateObject("SQLDMO.sqlserver")

 osvr.LoginTimeout = 20
 'Start Server.

 'The server must be started and connected in order to stop
it.
 'Attempt a connection.
 'If no login name, use NT Integrated security in an attempt.
 'to connect.
 If sNTAuth = "T" Then
 osvr.LoginSecure = True
 End If

 'This is the actual connection attempt.
 osvr.Connect sSvrName, sUser, sPassword

 'Create a temp variable for the path to the server DB files
 'becuase once the server is stopped, you can't access the
osvr object
 Dim sPathToServer As String
 sPathToServer =
osvr.Databases("master").PrimaryFilePath

 On Error GoTo 0
 'The shutdown command causes an error because the
current
 'connection is lost, so resume next.
 On Error Resume Next
 oClsErrorLog.ErrorLog "restartMSDE-Attempting to stop
server. . ."
 osvr.Shutdown (True)
 oClsErrorLog.ErrorLog "restartMSDE-The server was
successfully stopped . . ."
 Set osvr = Nothing

 HFACSMain.gStrTextMessage = "Stopping the server . . ."
 HFACSMain.gIntTimeToWait = 15

 'This keeps the form visible when it loses the focus
 Screen.ActiveForm.AutoRedraw = False

 'Pause for 15 seconds while the server really restarts
 frmWait.Show 1
 Screen.ActiveForm.AutoRedraw = True

 'Repaint the frmFtpUpdate from if it's open
 oClsErrorLog.ErrorLog "Is FTP form open? => " & _
 HFACSMain.IsOpen("frmFtpUpdate")
 If HFACSMain.IsOpen("frmFtpUpdate") Then
frmFt pUpdate.Refresh
 oClsErrorLog.ErrorLog "restartMSDE-Attempting to
restart server . . ."
 DoEvents 'Redraw screen

 'Repaint the frmFtpUpdate from if it's open
 oClsErrorLog.ErrorLog "Is frmDiskUpdate form open? =>
" & _
 HFACSMain.IsOpen("frmDiskUpdate")

 If HFACSMain.IsOpen("frmDiskUpdate") Then
frmDiskUpdate.Refresh
 oClsErrorLog.ErrorLog "restartMSDE-Attempting to
restart server . . ."
 DoEvents 'Redraw screen

'***

 295

 'This block is responsible for copying the current db file to
 'the local AppPath as the most current backup (.old) this is
 'the file that will be restored in the event of catastrophic
 'failure. It can only be accomplished here because the
SQL
 'server has to be stopped.

'***

 'Turn off error checking for disk manipulation
 On Error GoTo 0
 On Error Resume Next

 'Declare an object for hard disk file manipulation
 Dim FSO As Scripting.FileSystemObject
 Set FSO = CreateObject("Scripting.FileSystemObject")

 'Copy the last backup to the AppPath as the last good
backup.
 oClsErrorLog.ErrorLog
"***"
 oClsErrorLog.ErrorLog "Copying the most recent files
to the AppPath "
 oClsErrorLog.ErrorLog "while the server is stopped."
 oClsErrorLog.ErrorLog
"***"
 FSO.CopyFile sPathToServer &
HFACSMain.gStrDatabaseFileName, _
 HFACSMain.gStrAppPath &
HFACSMain.gStrDatabaseFileName & _
 ".old", True

 FSO.CopyFile sPathToServer &
Left(HFACSMain.gStrDatabaseFileName, _
 (Len(HFACSMain.gStrDatabaseFileName) - 4)) &
"_log.ldf", _
 HFACSMain.gStrAppPath &
Left(HFACSMain.gStrDatabaseFileName, _
 (Len(HFACSMain.gStrDatabaseFileName) - 4)) & _
 "_log.ldf.old", True

 Set FSO = Nothing

 'Turn on error checking
 On Error GoTo 0
 On Error GoTo StartError

 'Start the server back up again.
 Me.startMSDE

 'Pause for 5 seconds while the server really restarts
 HFACSMain.gStrTextMessage = "Starting the server . . ."
 HFACSMain.gIntTimeToWait = 5
 frmWait.Show 1
 DoEvents 'Redraw screen
 On Error GoTo 0

 restartMSDE = True

ExitSub:
 Screen.MousePointer = 0
 Exit Function

StartError:
 Screen.MousePointer = 0
 oClsErrorLog.ErrorLog "Error: " & Err.Description & ",
Number: " & Err.Number
 MsgBox "An error occurred restarting the server." &
Chr(13) _
 & Chr(13) & "The detailed error message is: " & _
 Err.Description & Chr(13) & Chr(13) & _
 "Error Number: " & Err.Number, _
 vbOKOnly + vbCritical, "Problem Restarting Server"
 restartMSDE = False
 Resume ExitSub

End Function

Private Sub Class_Terminate()

 Set oClsErrorLog = Nothing

End Sub

 296

CLASS-MUpdateController

Option Explicit

'###
' CLASS DESCRIPTION
'###
'Class Name: UpdateController.cls
'
'Author: Pat Flanders & Scott Tufts
'
'This class is the controller class for the cFTP class, the FTP
'form (frmFTPUpdate), and the common dialog control for
reading an update
'from a disk.
'
'References:
' - Microsoft Windows Common Controls 6.0
'
' NOTE: See function headers for internal component
references.
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: getUpdate()
'
'Description: 'This function initiates the FTP update session
by
'creating an instance of frmFtpUpdate which actually
performs the
'download and update.
'
'Input: None
'
'Output: Success or Failure
'
'References:
' - frmFtpUpdate.frm
'===
'##ModelId=3B294D0D03C8
Friend Function getUpdate() As Boolean

 frmFtpUpdate.Show 1
 'Return results of the FTP session
 If gblnFTPSuccess = True Then getUpdate = True Else
getUpdate = False

End Function

'===
'Function/Sub Name: getUpdateDisk()
'
'Description: This function displays the "Open" dialog box
from
'the Microsoft Windows Common Controls 6.0 allowing the
user to

'identify a path on a disk/network share where the
HFACS.mdf/_log.ldf
'update files reside. It then copies the files to the application
'path on the local machine and instantiates an instance of
'frmDiskUpdate to install them.
'
'Input: None
'
'Output: Success or Failure
'
'References:
' - frmDiskUpdate.frm
'===
'##ModelId=3B294D0E000F
Friend Function getUpdateDisk() As Boolean

 On Error GoTo StartError

 'Check to make sure user is updating the local server
 If HFACSMain.gStrServerName <> "(local)" Then
 MsgBox "You can only perform an update when logged
into " & _
 "the '(local)' server.", _
 vbExclamation + vbOKOnly, "Can't Update"
 getUpdateDisk = False
 GoTo ExitSub
 End If

 'Create a dialog box object
 Dim oDialog As New MSComDlg.CommonDialog

 'Variable to hold the path and file to get.
 Dim sFileName As String

 ' Set CancelError is True
 oDialog.CancelError = True
 ' Set flags
 oDialog.Flags = cdlOFNHideReadOnly
 ' Set filters
 oDialog.Filter = "HFACS Database Files
(HFACS.mdf)|HFACS.mdf"
 ' Specify default filter
 oDialog.FilterIndex = 1
 ' Display the Open dialog box
 oDialog.ShowOpen
 sFileName = oDialog.FileName

 DoEvents 'Redraw the screen

 Dim bDiskUpdateSuccess As Boolean
 bDiskUpdateSuccess =
frmDiskUpdate.performDiskUpdate(sFileName)

 If bDiskUpdateSuccess = True Then
 MsgBox "The HFACS update was successfully
installed!" & _
 Chr(13) & Chr(13) & "HFACS will now re-
initialize.", _
 vbInformation + vbOKOnly, "Finished"
 getUpdateDisk = True
 Else
 getUpdateDisk = False
 End If

 297

ExitSub:
 Set oDialog = Nothing

Exit Function

StartError:

 Screen.MousePointer = vbDefault
 getUpdateDisk = False
 Resume ExitSub

End Function

 298

FORMCLASS-frmDiskUpdate

Option Explicit

'###
' FORM DESCRIPTION
'###
'Class Name: frmDiskUpdate.frm
'
'Author: Pat Flanders & Scott Tufts
'
'This class is responsible for performing an update of the
HFACS
'database from a disk/network share.
'
'References: None
'
' NOTE: See function headers for internal component
references.
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: performDiskUpdate()
'
'Description: This function performs the actual update,
updating
'the form as it progresses.
'
'Input:
' sFileToGet - Path to the HFACS.mdf and HFACS_log.ldf
files
' used to update the database.
'
'Output: Success or Failure
'
'References:
' - Constructors.bas
' - MSDE.cls
' - HFACSMain.bas
'===
'##ModelId=3B294D160242
Friend Function performDiskUpdate(sFileToGet As String)
As Boolean

 Me.Visible = True

 On Error GoTo vbErrorHandler

 Screen.MousePointer = vbHourglass

 'Update the form
 frmDiskUpdate.lblAction.Caption = "Getting the new file .
. ."
 frmDiskUpdate.lblAction.Refresh

 'Declare an object for hard disk file manipulation
 Dim FSO As Scripting.FileSystemObject
 Set FSO = CreateObject("Scripting.FileSystemObject")

 'Turn off error checking for disk manipulation
 On Error GoTo 0
 On Error Resume Next
 'Copy the file . . . renaming it to HFACS.mdf
 FSO.DeleteFile HFACSMain.gStrAppPath & _
 HFACSMain.gStrDatabaseFileName, True
 FSO.CopyFile sFileToGet, HFACSMain.gStrAppPath & _
 HFACSMain.gStrDatabaseFileName, True
 FSO.DeleteFile HFACSMain.gStrAppPath & _
 Left(HFACSMain.gStrDatabaseFileName, _
 (Len(HFACSMain.gStrDatabaseFileName) - 4)) &
"_log.ldf", True
 Dim sTempJustTheFileName As String
 Dim sTempJustThePathPart As String
 sTempJustTheFileName = Right(sFileToGet, _
 Len(HFACSMain.gSt rDatabaseFileName))
 sTempJustThePathPart = Left(sFileToGet, _
 (Len(sFileToGet) -
Len(HFACSMain.gStrDatabaseFileName)))
 FSO.CopyFile sTempJustThePathPart & _
 Left(sTempJustTheFileName,
(Len(sTempJustTheFileName) - 4)) & _
 "_log.ldf", HFACSMain.gStrAppPath &
Left(sTempJustTheFileName, _
 (Len(sTempJustTheFileName) - 4)) & "_log.ldf", True
 On Error GoTo 0
 On Error GoTo vbErrorHandler

 'Update the form
 frmDiskUpdate.lblAction.Caption = "Installing . . . "
 frmDiskUpdate.lblAction.Refresh

 'Install the new File
 Dim bTestSuccess As Boolean
 bTestSuccess = True
 bTestSuccess =
Constructors.New_MSDE(HFACSMain.gStrUID, _
 HFACSMain.gStrPWD, _
 HFACSMain.gStrServerName, _
 HFACSMain.gStrDatabaseFileName, _
 HFACSMain.gStrDatabaseName, _
 HFACSMain.gStrAppPath, _
 HFACSMain.gStrAutoLogon, _
 HFACSMain.gStrFirstRun, _
 HFACSMain.gStrNTauth, _
 HFACSMain.gStrTypeDB)

 'Update the form
 frmDiskUpdate.lblAction.Caption = _
 "Stopping and restarting server . . ."
 frmDiskUpdate.lblAction.Refresh

 'Restart MSDE
 oMSDE.restartMSDE

 'Update the form
 frmDiskUpdate.lblAction.Caption = "Dropping old
database . . ."
 frmDiskUpdate.lblAction.Refresh

 'Drop the old file
 If oMSDE.dropDB <> True Then
 performDiskUpdate = False

 299

 GoTo ExitSub
 End If

 'Update the form
 frmDiskUpdate.lblAction.Caption = "Attaching new file . .
."
 frmDiskUpdate.lblAction.Refresh

 'Start and copy the new file over
 If oMSDE.StartAndCopy <> True Then
 performDiskUpdate = False
 GoTo ExitSub
 End If

 Screen.MousePointer = vbDefault

 performDiskUpdate = True

ExitSub:
 'Cleanup
 Set oMSDE = Nothing

 Set FSO = Nothing
 Me.Visible = False

Exit Function

vbErrorHandler:
 frmDiskUpdate.lblAction.Caption = Err.Description
 frmDiskUpdate.lblAction.Refresh
 MsgBox "An error occurred trying to install the files.
Verify" & _
 " that you have adequate permissions to perform this
update." & _
 Chr(13) & Chr(13) & "The detailed error message is: " &
_
 Err.Description & Chr(13) & Chr(13) & "Error Number: "
& Err.Number, _
 vbOKOnly + vbCritical, "Error During Install"
 performDiskUpdate = False
 Resume ExitSub

End Function

 300

FORMCLASS-frmFtpUpdate

Option Explicit

'###
' FORM DESCRIPTION
'###
'Class Name: frmFtpUpdate.frm
'
'Author: Pat Flanders & Scott Tufts
'
'This class is responsible for performing an update of the
HFACS
'database via FTP. This class uses the FTPServer.exe server
and
'the CallbackCls.cls to receive status messages from the
HFACS
'FTP server.
'
'ASIDE: The FTP server (HFACSFTP.exe) provides the
functions needed
'to get FTP updates. These functions and their associated
classes
'were removed from this component and compiled separately
in order
'to work around the inability of Visual Basic to provide
support
'for free threading. By placing the FTP functionalilty in a
'separately compiled executable, it can run in it's own
process,
'which allows screen updates during long FTP downloads.
'
'References:
' - Microsoft Data Formating Object Library 6.0
' - Microsoft Scripting Runtime
' - GIF89 1.0 (For animated GIFs on Forms)
' - The HFACSFTP.exe ftp server.
'
' NOTE: See function headers for internal component
references.
'###

'***
' PROPERTIES
'***

'Object variable for holding an instance of the FTPserver
'##ModelId=3B294D1F032D
Dim oDoFTPThread As HFACSFTP.cFTP

'A temp string variable to simplify string manupulation when
'determining paths on the FTP server and for download
locations
'##ModelId=3B294D1F0399
Dim sTempJustTheFileName As String

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdCancel_Click()
'
'Description: This sub closes the form
'
'Input: None
'
'Output: None
'
'References: None
'===
'##ModelId=3B294D20001F
Private Sub cmdCancel_Click()

 Unload Me

End Sub

'===
'Function/Sub Name: Fo rm_Load()
'
'Description: This sub resets flags when the form is opened.
'
'Input: None
'
'Output: None
'
'References: None
'===
'##ModelId=3B294D20004E
Private Sub Form_Load()

 'Reset global variable for indicating a successful FTP to
false
 gblnFTPSuccess = False

 'Enable buttons
 EnableControls False

End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: This sub verifies that the FTP is being
performed on
'a local server and intiates the FTP connection by
instantiating
'an FTP server object. It then downloads the first new
database file
'(HFACS.mdf) to the application path. When download of
the first
'file is complete, the CallbackCls interface is notified by the
'FTP server, which in turn executes the download of the next
file
'via the GotFileDoNext() sub.
'
'Input: None
'
'Output: None
'

 301

'References: None
'===
'##ModelId=3B294D20007D
Private Sub cmdConnect_Click()

 On Error GoTo vbErrorHandler

 If HFACSMain.gStrServerName <> "(local)" Then
 MsgBox "You can only perform an update when logged
into the " & _
 "'(local)' server.", _
 vbExclamation + vbOKOnly, "Can't Update"
 GoTo ExitSub
 End If

 Screen.MousePointer = vbHourglass
 frmFtpUpdate.lblAction.Caption = "Initializing connection
. . ."
 frmFtpUpdate.lblAction.Refresh

 ' ask the FTP server to create an FTP object
 Set oDoFTPThread = New HFACSFTP.cFTP

 'Connect
 oDoFTPThread.Connect txtServer.Text, txtUser.Text,
txtPassword.Text
 frmFtpUpdate.lblAction.Caption = "Downloading .mdf file
(this " & _
 "could take awhile) . . ."
 frmFtpUpdate.lblAction.Refresh

 'Disable buttons
 EnableControls oDoFTPThread.Connected

 'Download the file
 frmFtpUpdate.gifDownloading.Visible = True 'Show
animated GIF
 frmFtpUpdate.gifDownloading.Play
 'Add a '\' to the end of a path entry if they left it off
 If (Len(txtPath.Text) > 1) And (Right(txtPath.Text, 1) <>
"\") _
 Then txtPath.Text = txtPath.Text & "\"
 'Remove a leading '\' from a path entry.
 If Left(txtPath.Text, 1) = "\" Then txtPath.Text = _
 Right(txtPath.Text, Len(txtPath.Text) - 1)

 'Set flag for callback function
 gIntCounter = 1

 'Download the first file
 oDoFTPThread.StartGetFTP txtPath.Text & _
 HFACSMain.gStrDatabaseFileName,
HFACSMain.gStrAppPath & _
 "UPDATE-" & HFACSMain.gStrDatabaseFileName, _
 ftBinary, New CallbackCls

ExitSub:

Exit Sub

vbErrorHandler:
 Screen.MousePointer = vbDefault
 frmFtpUpdate.gifDownloading.Visible = False 'Hide
animated GIF
 If Err.Number = -2147219498 Then
 'This traps a bad path entry

 MsgBox "Can't find that path on the FTP server.",
vbOKOnly, "Error"
 Resume ExitSub
 Else 'Unknown error
 MsgBox "An error occurred attempting FTP." &
Chr(13) & Chr(13) & _
 "The detailed error message is: " & Err.Description &
Chr(13) & _
 Chr(13) & "Error Number: " & Err.Number, _
 vbOKOnly + vbCritical, "FTP Error"
 End If
 Resume ExitSub

End Sub

'===
'Function/Sub Name: GotFileDoNext()
'
'Description: This sub downloads the second new database
file
'(HFACS_log.ldf) to the application path. When download
of the
'file is complete, the CallbackCls interface is notified by the
'FTP server, which in turn executes the installation of the 2
files
' via the GotFileLast() sub.
'
'Input: None
'
'Output: None
'
'References: None
'===
'##ModelId=3B294D2000AB
Friend Sub GotFileDoNext()

On Error GoTo vbErrorHandler

 ' ask the FTP server to create an new FTP object
 oDoFTPThread.DisConnect
 'Set oDoFTPThread = Nothing
 'Set oDoFTPThread = New HFACSFTP.cFTP

 'Connect
 oDoFTPThread.Connect txtServer.Text, txtUser.Text,
txtPassword.Text

 'Set flag for callback function
 gIntCounter = 2

 'Download the second file
 frmFtpUpdate.lblAction.Caption = "Downloading _log.ldf
file . . ."
 frmFtpUpdate.lblAction.Refresh
 sTempJustTheFileName =
Left(HFACSMain.gStrDatabaseFileName, _
 (Len(HFACSMain.gStrDatabaseFileName) - 4)) &
"_log.ldf"
 oDoFTPThread.StartGetFTP txtPath.Text &
sTempJustTheFileName, _
 HFACSMain.gStrAppPath & "UPDATE2-" &
sTempJustTheFileName, ftBinary, New CallbackCls

ExitSub:
Exit Sub

vbErrorHandler:

 302

 Screen.MousePointer = vbDefault
 frmFtpUpdate.gifDownloading.Visible = False 'Hide
animated GIF
 MsgBox "An error occurred attempting FTP." & Chr(13)
& Chr(13) & _
 "The detailed error message is: " & Err.Description &
Chr(13) & _
 Chr(13) & "Error Number: " & Err.Number, _
 vbOKOnly + vbCritical, "Error Attempting FTP"
 Unload Me

End Sub

'===
'Function/Sub Name: GotFileLast()
'
'Description: This sub performs the actual update, updating
'the form to show status as it progresses.
'
'Input: None
'
'Output: None
'
'References: None
'===
'##ModelId=3B294D2000DA
Friend Sub GotFileLast()

 On Error GoTo vbErrorHandler

 'Destroy connection to the FTP server
 oDoFTPThread.DisConnect
 Set oDoFTPThread = Nothing

 frmFtpUpdate.gifDownloading.Visible = False 'Hide
animated GIF

 frmFtpUpdate.lblAction.Caption = "File downloaded.
Creating backups . . ."
 frmFtpUpdate.lblAction.Refresh
 DoEvents 'Redraw screen and check for events
 cmdCancel.Enabled = False

 'Declare an object for hard disk file manipulation
 Dim FSO As Scripting.FileSystemObject
 Set FSO = CreateObject("Scripting.FileSystemObject")
 'Back up the existing hfacs.mdf and rename the
downloaded file to hfacs.mdf
 On Error GoTo 0
 On Error Resume Next 'Turn off error checking for the
disk manipulation
 FSO.DeleteFile HFACSMain.gStrAppPath &
HFACSMain.gStrDatabaseFileName, True
 FSO.CopyFile HFACSMain.gStrAppPath & "UPDATE-"
& _
 HFACSMain.gStrDatabaseFileName, _
 HFACSMain.gStrAppPath &
HFACSMain.gStrDatabaseFileName, True
 FSO.DeleteFile HFACSMain.gStrAppPath & "UPDATE-"
& _
 HFACSMain.gStrDatabaseFileName, True
 FSO.DeleteFile HFACSMain.gStrAppPath &
sTempJustTheFileName, True
 FSO.CopyFile HFACSMain.gStrAppPath & "UPDATE2-"
& _

 sTempJustTheFileName, HFACSMain.gStrAppPath &
sTempJustTheFileName, True
 FSO.DeleteFile HFACSMain.gStrAppPath & "UPDATE2-
" & sTempJustTheFileName, True
 On Error GoTo 0
 On Error GoTo vbErrorHandler

 'Install the new File
 frmFtpUpdate.lblAction.Caption = "Installing . . ."
 frmFtpUpdate.lblAction.Refresh
 DoEvents 'Redraw screen and check for events

 '*************** Put the Code here
 Dim bTestSuccess As Boolean
 bTestSuccess = True
 bTestSuccess =
Constructors.New_MSDE(HFACSMain.gStrUID, _
 HFACSMain.gStrPWD, _
 HFACSMain.gStrServerName, _
 HFACSMain.gStrDatabaseFileName, _
 HFACSMain.gStrDatabaseName, _
 HFACSMain.gStrAppPath, _
 HFACSMain.gStrAutoLogon, _
 HFACSMain.gStrFirstRun, _
 HFACSMain.gStrNTauth, _
 HFACSMain.gStrTypeDB)

 oMSDE.restartMSDE
 DoEvents 'Redraw screen and check for events
 frmFtpUpdate.lblAction.Caption = "Dropping old database
. . ."
 frmFtpUpdate.lblAction.Refresh
 Me.Refresh

 If oMSDE.dropDB <> True Then
 gblnFTPSuccess = False
 GoTo ExitSub
 End If
 DoEvents 'Redraw screen and check for events
 frmFtpUpdate.lblAction.Caption = "Attaching new
database . . ."
 frmFtpUpdate.lblAction.Refresh

 If oMSDE.StartAndCopy <> True Then
 gblnFTPSuccess = False
 GoTo ExitSub
 End If
 DoEvents 'Redraw screen and check for events

 frmFtpUpdate.lblAction.Caption = "Finishing up . . ."
 frmFtpUpdate.lblAction.Refresh
 Screen.MousePointer = vbDefault

 MsgBox "The HFACS file was successfully installed." &
Chr(13) _
 & Chr(13) & "HFACS will now re-initialize.", _
 vbInformation + vbOKOnly, "Finished"
 gblnFTPSuccess = True

ExitSub:
 Set oMSDE = Nothing
 Set FSO = Nothing
 Unload Me

 Exit Sub

vbErrorHandler:
 Screen.MousePointer = vbDefault

 303

 frmFtpUpdate.gifDownloading.Visible = False 'Hide
animated GIF
 If Err.Number = -2147219498 Then
 'This traps a bad path entry
 frmFtpUpdate.lblAction.Caption = "Can't find that path
on the " & _
 "FTP server or the connection was lost."
 frmFtpUpdate.lblAction.Refresh
 MsgBox "Can't find that path on the FTP server.",
vbOKOnly, "Error"
 Resume ExitSub
 Else 'Unknown error
 frmFtpUpdate.lblAction.Caption = Err.Description
 frmFtpUpdate.lblAction.Refresh
 MsgBox "An error occurred trying to install the files
after" & _
 " download. Verify that you have adequate
permissions to " & _
 "perform this update." & Chr(13) & Chr(13) & _
 "The detailed error message is: " & Err.Description &
Chr(13) _
 & Chr(13) & "Error Number: " & Err.Number, _
 vbOKOnly + vbCritical, "Error Installing Files"
 End If
 Resume ExitSub

End Sub

'===
'Function/Sub Name: cmdDisconnect_Click()
'
'Description: This sub performs disconnect from the FTP
server
'when it is enabled. It is not enabled except during
development.
'
'Input: None
'
'Output: None
'
'References: None
'===
'##ModelId=3B294D200109
Private Sub cmdDisconnect_Click()

On Error GoTo vbErrorHandler
'
' Disconnect from the FTP Server
'
 oDoFTPThread.DisConnect
 EnableControls oDoFTPThread.Connected

 Exit Sub

vbErrorHandler:
 MsgBox Err.Description

End Sub

'===
'Function/Sub Name: EnableControls()
'
'Description: This sub performs dynamically enables/disbles
buttons
'on the form based upon the connection state of the FTP
server.
'
'Input:
' bConnected - Boolean value indicating that the server is
' connected or disconnected.
'
'Output: None
'
'References: None
'===
'##ModelId=3B294D200138
Private Sub EnableControls(ByVal bConnected As Boolean)

 txtServer.Enabled = Not (bConnected)
 txtPath.Enabled = Not (bConnected)
 txtUser.Enabled = Not (bConnected)
 txtPassword.Enabled = Not (bConnected)
 cmdConnect.Enabled = Not (bConnected)
 cmdDisconnect.Enabled = bConnected

End Sub

'===
'Function/Sub Name: Form_Unload()
'
'Description: This sub performs cleanup operations,
ensuring all
'objects are destroyed when the form is closed.
'
'Input:
' Cancel - Determines if form is unloaded or hidden
'
'Output: None
'
'References: None
'===
'##ModelId=3B294D2001B5
Private Sub Form_Unload(Cancel As Integer)

 On Error Resume Next
 'Make sure the FTP server is disconnected and destroy it.
 If oDoFTPThread.Connected = True Then
oDoFTPThread.DisConnect
 Set oDoFTPThread = Nothing

End Sub

 304

FORMCLASS-ODBLogon

Option Explicit

'###
' FORM DESCRIPTION
'###
'Class Name: frmODBLogon.frm
'
'Author: Pat Flanders & Scott Tufts
'
'This class is responsible for a prompted logon. I provides
the
'capability to query a user for logon parameters and test thier
'validity against a given instance of a SQL Server.
'
'References:
' - Microsoft Data Formating Object Library 6.0
' - GIF89 1.0 (For animated GIFs on Forms)
'
' NOTE: See function headers for internal component
references.
'###

'***
' PROPERTIES
'***

'Warning flag indicating that the database needs to be
installed on
'the local server.
'##ModelId=3B294D050203
Private bW arningFlag As Boolean

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: chkUseNTAuth_Click()
'
'Description: This sub updates form properties when the user
clicks
'the "Use NT Authentication" check box. It "grey's out" the
username
'and password text boxes and makes them unavailable for
update.
'
'Input: None
'
'Output: None
'
'References: None
'===
'##ModelId=3B294D050280
Private Sub chkUseNTAuth_Click()

 If chkUseNTAuth.Value = 1 Then
 frmODBLogon.txtUID = ""

 frmODBLogon.txtUID.Enabled = False
 frmODBLogon.txtUID.BackColor = &H8000000F
 frmODBLogon.txtUID.Refresh
 frmODBLogon.txtPWD = ""
 frmODBLogon.txtPWD.Enabled = False
 frmODBLogon.txtPWD.BackColor = &H8000000F
 frmODBLogon.txtPWD.Refresh
 Else
 frmODBLogon.txtUID = HFACSMain.gStrUID
 frmODBLogon.txtUID.Enabled = True
 frmODBLogon.txtUID.BackColor = &H80000009
 frmODBLogon.txtUID.Refresh
 frmODBLogon.txtPWD = ""
 frmODBLogon.txtPWD.Enabled = True
 frmODBLogon.txtPWD.BackColor = &H80000009
 frmODBLogon.txtPWD.Refresh
 End If

End Sub

'===
'Function/Sub Name: cmdCancel_Click()
'
'Description: This sub closes the form
'
'Input: None
'
'Output: None
'
'References: None
'===
'##ModelId=3B294D0502AF
Private Sub cmdCancel_Click()

 Unload Me

End Sub

'===
'Function/Sub Name: cmdOk_Click()
'
'Description: This sub combines the functionality of testing
the
'connection with the user supplied paramaters and, if the
parameters
'are valid, updating the pertinent global variables to enable
'other component class intances to function (e.g. to update the
'.ini file with new settings).
'
'Input: None
'
'Output: None
'
'References:
' - Constructors.bas
' - MSDE.cls
' - HFACSMain.bas
'===
'##ModelId=3B294D0502DE
Private Sub cmdOk_Click()

 On Error GoTo StartError

 305

 'Only proceed with the update if all tests are passed
 If testNewConn() = True Then

 Screen.MousePointer = 11
 Dim bResponseStartAndCopy As Boolean

 'Check if NT Auth should be used
 Dim sNTAuth As String
 If chkUseNTAuth.Value = 1 Then
 sNTAuth = "T"
 Else
 sNTAuth = "F"
 End If

 'Create an instance of MSDE copy the database if
needed
 bResponseStartAndCopy =
Constructors.New_MSDE(txtUID.Text, _
 txtPWD.Text, txtServer.Text,
HFACSMain.gStrDat abaseFileName, _
 txtDatabase.Text, HFACSMain.gStrAppPath, _
 HFACSMain.gStrAutoLogon,
HFACSMain.gStrFirstRun, sNTAuth, _
 HFACSMain.gStrTypeDB)
 bResponseStartAndCopy = oMSDE.StartAndCopy
 Set oMSDE = Nothing

 If bResponseStartAndCopy = True Then
 'Set global variables to new values
 gStrUID = frmODBLogon.txtUID.Text
 gStrPWD = frmODBLogon.txtPWD.Text
 gStrServerName = frmODBLogon.txtServer.Text
 gStrDatabaseName = frmODBLogon.txtDatabase
 If frmODBLogon.txtServer.Text = "(local)" And _
 frmODBLogon.txtPWD = "" Then
 gStrAutoLogon = "T"
 Else
 gStrAutoLogon = "F"
 End If
 If chkUseNTAuth.Value = 1 Then
 gStrNTauth = "T"
 Else
 gStrNTauth = "F"
 End If
 Screen.MousePointer = 0
 MsgBox "Successfully connected to server: " &
txtServer.Text, _
 vbInformation + vbOKOnly, "Connected"
 gblnPromptedLogonSuccess = True
 Unload Me
 Else
 Screen.MousePointer = 0
 MsgBox "There is an unknown problem with this
connection." & _
 Chr(13) & Chr(13), vbExclamation + vbOKOnly, _
 "Connection Refused"
 gblnPromptedLogonSuccess = False
 Unload Me
 End If
 End If

ExitSub:
 Screen.MousePointer = 0
 Exit Sub

StartError:
 Screen.MousePointer = 0

 MsgBox "An unknown error occured in frmODBLogon at
method" & _
 " cmdOK_Click." & Chr(13) & Chr(13) & _
 "The detailed error message is: " & _
 Err.Description & Chr(13) & Chr(13) & _
 "Error Number: " & Err.Number, _
 vbOKOnly + vbCritical, "Error"
 Resume ExitSub

End Sub

'===
'Function/Sub Name: cmdTest_Click()
'
'Description: This sub calls the testNewConn() function and
returns
'an appropriate message to the user.
'
'Input: None
'
'Output: None
'
'References: None
'===
'##ModelId=3B294D05030D
Private Sub cmdTest_Click()

 Dim bTestResults As Boolean 'Placeholder for test results
 bTestResults = testNewConn() 'Run a test
 If bTestResults = True And bWarningFlag = False Then
 MsgBox "Connection test succeeded!", vbInformation +
vbOKOnly, _
 "Test Succeeded"
 End If
 If bTestResults = True And bWarningFlag = True Then
 MsgBox "The database you specified is not installed." &
_
 Chr(13) & Chr(13) & "If you proceed with this
connection, " & _
 "you must have ADMINISTRATOR priveleges to the
this machine " & _
 "and the database so that the database can be " & _
 "automatically installed.", vbExclamation, "Warning"
 End If

End Sub

'===
'Function/Sub Name: Form_Load(()
'
'Description: This sub sets the states of the form controls
(visible/
'not visible and enabled/disabled) based upon current global
variable
'settings.
'
'Input: None
'
'Output: None
'
'References:
' - Constructors.bas
' - HFACSMain.bas
'===
'##ModelId=3B294D05033C
Private Sub Form_Load()

 306

 'Ensure the logon success flag is reset to false
 gblnPromptedLogonSuccess = False

 'Set initial value to false
 gblnNoCopyNeeded = False

 'Populate the combobox
 Dim i As Integer
 'Use the SQL DMO Application Object to find the
available SQL Servers
 Dim oSQLServerDMOApp As sqldmo.Application
 Set oSQLServerDMOApp = New sqldmo.Application

 txtServer.AddItem "(local)"
 'Turn off error checking incase there are no servers
detected
 On Error Resume Next
 Dim namX As NameList
 Set namX =
oSQLServerDMOApp.ListAvailableSQLServers
 For i = 1 To namX.Count
 If namX.Item(i) <> "(local)" Then
 txtServer.AddItem namX.Item(i)
 End If
 Next
 'Show top server
 txtServer.ListIndex = 0

 txtServer.Text = HFACSMain.gStrServerName
 'Populate the other text boxes
 txtUID.Text = HFACSMain.gStrUID
 txtDatabase.Text = HFACSMain.gStrDatabaseName
 txtPWD.Text = HFACSMain.gStrPWD
 If HFACSMain.gStrNTauth = "T" Then
 chkUseNTAuth.Value = 1
 frmODBLogon.txtUID = ""
 frmODBLogon.txtUID.Enabled = False
 frmODBLogon.txtUID.BackColor = &H8000000F
 frmODBLogon.txtUID.Refresh
 frmODBLogon.txtPWD = ""
 frmODBLogon.txtPWD.Enabled = False
 frmODBLogon.txtPWD.BackColor = &H8000000F
 frmODBLogon.txtPWD.Refresh
 End If

End Sub

'===
'Function/Sub Name: testNewConn()
'
'Description: This sub tests the validity of the user specified
'connection values by attempting to start and connect to the
'server. Upon successful connection to the server specified, it
'verifies existence of the HFACS database on that server.
'
'Input: None
'
'Output: None
'
'References:
' - Constructors.bas
' - MSDE.cls
' - HFACSMain.bas
'===

'##ModelId=3B294D05036B
Private Function testNewConn() As Boolean

 On Error GoTo StartError

 Screen.MousePointer = 11
 frmODBLogon.lblAction.Visible = True 'Show the
connect message
 frmODBLogon.lblAction.Refresh
 frmODBLogon.gifNetwork.Visible = True 'Show animated
GIF
 frmODBLogon.gifNetwork.Play

 'For some reason, if a user enters a ';' it messup up the
 'logon . . . so remove them.
 txtUID.Text = Replace(txtUID.Text, ";", "")

 'Set Flags
 bWarningFlag = False
 testNewConn = False
 Dim bResponseServer As Boolean
 Dim bResponseDatabase As Boolean

 'Check if NT Auth should be used
 Dim sNTAuth As String
 If Me.chkUseNTAuth.Value = 1 Then
 sNTAuth = "T"
 Else
 sNTAuth = "F"
 End If

 'For some reason, a logon will work using NTAuth, even if
the
 'checkbox isn't checked,
 'So this code will stop that.
 If chkUseNTAuth.Value = 0 And txtUID.Text = "" And
txtPWD.Text = "" Then
 MsgBox "Invalid User ID or Password.", vbCritical,
"Connection Failed"
 testNewConn = False
 GoTo TestConnFailure
 End If

 'Test the ability to start and connect to an MSDE or SQL
server
 bResponseServer =
Constructors.New_MSDE(txtUID.Text, txtPWD.Text, _
 txtServer.Text, HFACSMain.gStrDatabaseFileName, _
 txtDatabase.Text, HFACSMain.gStrAppPath, _
 HFACSMain.gStrAutoLogon,
HFACSMain.gStrFirstRun, _
 sNTAuth, HFACSMain.gStrTypeDB)
 bResponseServer = oMSDE.startMSDE

 'Check for a remote connection to SQL 2k . . . if this is a
 'remote connection attempt, and it works, then no copy is
 'needed, so just quit this function and return true.
 If gblnNoCopyNeeded = True Then testNewConn = True:
GoTo ExitSub

 If bResponseServer = True Then
 'Now test for the existance of the database
 bResponseDatabase = oMSDE.databaseExists

 If bResponseDatabase = True Then
 testNewConn = True
 Else

 307

 'Finally, test to see if the SQL server is local or
remote.
 If txtServer.Text = "(local)" Then
 testNewConn = True
 bWarningFlag = True
 Else
 Screen.MousePointer = 0
 MsgBox "The server you specified exists, but it is
not" & _
 " on the local machine and the database you
specified" & _
 " is not installed." & Chr(13) & Chr(13) & _
 "This program cannot create a database on a
machine " & _
 "other than the local machine.", vbCritical, _
 "Connection Failed"
 testNewConn = False
 End If
 End If
 End If

ExitSub:
 Screen.MousePointer = 0
 Set oMSDE = Nothing

TestConnFailure:
 Screen.MousePointer = 0
 frmODBLogon.lblAction.Visible = False 'Hide the connect
message
 frmODBLogon.lblAction.Refresh
 frmODBLogon.gifNetwork.Visible = False 'Hide animated
GIF

 Exit Function

StartError:
 Screen.MousePointer = 0
 MsgBox "Destination host unreachable. The server may
not " & _
 "be started or you may have to build a System DSN." &
Chr(13) & Chr(13) & _
 "The detailed error message is: frmODBLogon - " &
Err.Description & _
 Chr(13) & Chr(13) & "Error Number: " & Err.Number,
_
 vbOKOnly + vbCritical, "Connection Failed"
 Resume ExitSub

End Function

 308

FORMCLASS-Wait

Option Explicit

'###
' FORM DESCRIPTION
'###
'Class Name: frmWait.frm
'
'Author: Pat Flanders & Scott Tufts
'
'This class is responsible for showing a status bar capable of
'pausing the number of seconds specified by
'HFACSMain.gIntTimeToWait and displaying the message
contained
'in HFACSMain.gStrTextMessage.
'
'References:
' - Microsoft Windows Common Controls 6.0
'
' NOTE: See function headers for internal component
references.
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Form_GotFocus()
'
'Description: This sub reads the values contained in the
global
'variables to determine how long to show itself and what
message
'to display.
'
'Input: None
'
'Output: None
'
'References:
' - HFACSMain.bas
'===
'##ModelId=3B294D0F0138

Private Sub Form_GotFocus()

 guaStatus.Value = 0
 guaStatus.Max = HFACSMain.gIntTimeToWait

 Screen.MousePointer = vbHourglass

 Dim PauseTime
 Dim Start
 Dim i As Integer

 'Retrieve the duration from the global variable
 PauseTime = HFACSMain.gIntTimeToWait

 Start = Timer ' Set start time.
 Do While Timer < Start + PauseTime
 guaStatus.Value = Abs(Timer - Start)
 DoEvents ' Yield to other processes.
 Loop
 Screen.MousePointer = vbDefault
 Unload Me

End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: This sub reads the values contained in the
global
'variables to determine the message to display on the form.
'
'Input: None
'
'Output: None
'
'References:
' - HFACSMain.bas
'===
'##ModelId=3B294D0F0167
Private Sub Form_Load()

 frmWait.lblAction.Caption =
HFACSMain.gStrTextMessage

End Sub

 309

MODULE-Constructors

Option Explicit

'###
' MODULE DESCRIPTION
'###
'Module Name: Constructors.bas
'
'Author: Pat Flanders & Scott Tufts
'
'This module defines functions that pair creation of new
object
'instances using the reusable global objects defined in
HFACSMain
'with a call to an init() function of the associated class. In
this
'manner, these functions can act as psuedo-constructors that
are
'capable of passing arguments -- a feature not available in
Visual
'Basic 6.0.
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: New_INIFile()
'
'Description: This function acts as a psuedo-constructor. It
'creates a new INIFIle object and calls the INIFile.init()
function,
'passing desired parameters to ensure a consistent state.
'
'Input:
' sFileName - String value of representing the name of the
' the .ini file to manipulate.
'
'Output: None
'
'References: INIFile.cls
'===
'##ModelId=3B294D140138
Public Function New_INIFile(sFileName As String)

 Set oINIFile = New INIFile

 'Set the INIFile class instance to always use the global ini
 'filename for read/write operations
 oINIFile.Init gINIFILENAME

End Function

'===
'Function/Sub Name: New_INIFileController()
'
'Description: This function acts as a psuedo-constructor. It
'creates a new INIFIleController object and calls the
'INIFileController.init() function, passing desired parameters
'to ensure a consistent state.

'
'Input: Currently, none. Future implementation may require
' parameters, so this code remains.
'
'Output: None
'
'References: INIFile.cls
'===
'##ModelId=3B294D140177
Public Function New_INIFileController()

 Set oINIFileController = New INIFileController
 oINIFileController.Init

End Function

'===
'Function/Sub Name: New_HFACSConnection()
'
'Description: This function acts as a psuedo-constructor. It
'creates a new HFACSConnection object and calls the
'HFACSConnection.init() function, passing desired
parameters
'to ensure a consistent state.
'
'Input:
' sUser - The user ID
' sPassword - The user password
' sSvrName - The name of the MSDE or SQL Server
' sMDFName - The name of the .mdf file containing the
' database.
' sDBName - The name of the database
' sInstDirectory - The application path
' sAutomaticLogon - Toggle to log on with/without prompt
' sFirstRunCheck - Toggle for determining if this is the first
run
' after an update.
' sNTAuth - Toggle for determining if NT
authentication
' should be used for logon attempts.
' sTypeDB - The type of DB this program will
represent
' (mil, civ, or both).'
'
'Output: None
'
'References: HFACSConnection.cls
'===
'##ModelId=3B294D1401A5
Public Function New_HFACSConnection(Optional sUser As
String, Optional sPassword As String, Optional sSvrName As
String, Optional sMDFName As String, Optional sDBName
As String, Optional sInstDirectory As String, Optional
sAutomaticLogon As String, Optional sFirstRunCheck As
String, Optional sNTAuth As String, Optional sTypeDB As
String)

 Set oHFACSConnection = New HFACSConnection

 'Set the MSDE class instance default values
 If IsMissing(sUser) Then sUser = gStrUID
 If IsMissing(sPassword) Then sPassword = gStrPWD
 If IsMissing(sSvrName) Then sSvrName =
gStrServerName

 310

 If IsMissing(sMDFName) Then sMDFName =
gStrDatabaseFileName
 If IsMissing(sDBName) Then sDBName =
gStrDatabaseName
 If IsMissing(sInstDirectory) Then sInstDirectory =
gStrAppPath
 If IsMissing(sAutomaticLogon) Then sAutomaticLogon =
gStrAutoLogon
 If IsMissing(sFirstRunCheck) Then sFirstRunCheck =
gStrFirstRun
 If IsMissing(sNTAuth) Then sNTAuth = gStrNTauth
 If IsMissing(sTypeDB) Then sTypeDB = gStrTypeDB

 oHFACSConnection.Init sUser, _
 sPassword, _
 sSvrName, _
 sMDFName, _
 sDBName, _
 sInstDirectory, _
 sAutomaticLogon, _
 sFirstRunCheck, _
 sNTAuth, _
 sTypeDB

End Function

'===
'Function/Sub Name: New_MSDE()
'
'Description: This function acts as a psuedo-constructor. It
'creates a new MSDE object and calls the MSDE.init()
function,
'passing desired parameters to ensure a consistent state.
'
'Input:
' sUser - The user ID
' sPassword - The user password
' sSvrName - The name of the MSDE or SQL Server
' sMDFName - The name of the .mdf file containing the
' database.
' sDBName - The name of the database
' sInstDirectory - The application path
' sAutomaticLogon - Toggle to log on with/without prompt
' sFirstRunCheck - Toggle for determining if this is the first
run
' after an update.
' sNTAuth - Toggle for determining if NT
authentication
' should be used for logon attempts.
' sTypeDB - The type of DB this program will
represent

' (mil, civ, or both).'
'
'Output: None
'
'References: MSDE.cls
'===
'##ModelId=3B294D140290
Public Function New_MSDE(Optional sUser As String,
Optional sPassword As String, Optional sSvrName As String,
Optional sMDFName As String, Optional sDBName As
String, Optional sInstDirectory As String, Optional
sAutomaticLogon As String, Optional sFirstRunCheck As
String, Optional sNTAuth As String, Optional sTypeDB As
String)

 Set oMSDE = New MSDE

 'Set the MSDE class instance default values.
 'Notice that password remains "" if it is missing. This
forces
 'a prompted logon.
 If IsMissing(sUser) Then sUser = gStrUID
 If IsMissing(sPassword) Then sPassword = ""
 If IsMissing(sSvrName) Then sSvrName =
gStrServerName
 If IsMissing(sMDFName) Then sMDFName =
gStrDatabaseFileName
 If IsMissing(sDBName) Then sDBName =
gStrDatabaseName
 If IsMissing(sInstDirectory) Then sInstDirectory =
gStrAppPath
 If IsMissing(sAutomaticLogon) Then sAutomaticLogon =
gStrAutoLogon
 If IsMissing(sFirstRunCheck) Then sFirstRunCheck =
gStrFirstRun
 If IsMissing(sNTAuth) Then sNTAuth = gStrNTauth
 If IsMissing(sTypeDB) Then sTypeDB = gStrTypeDB

 oMSDE.Init sUser, _
 sPassword, _
 sSvrName, _
 sMDFName, _
 sDBName, _
 sInstDirectory, _
 sAutomaticLogon, _
 sFirstRunCheck, _
 sNTAuth, _
 sTypeDB

End Function

 311

MODULE-HFACSMain

Option Explicit

'###
' MODULE DESCRIPTION
'###
'Module Name: HFACSMain.bas
'
'Author: Pat Flanders & Scott Tufts
'
'This module is accessible to all classes and forms in the
project.
'It contains declarations for all global variables used to pass
'values between forms and instances of classes.
'
'References For The Entire Component:
' - Microsoft Data Formating Object Library 6.
' - Microsoft ActiveX Data Objects 2.5 Library
' - Microsoft SQLDMO Object Library
' - Microsoft Scripting Runtime
' - GIF89 1.0 (For animated GIFs on Forms)
' - The HFACSFTP.exe ftp server.
'###

'***
' GLOBAL VARIABLES
'***

'This variable is used by HFACSMain.Main() for initializing
the entire
'component. It is required for all compiled DLLs, but not
used for
'else.
'##ModelId=3B294CE9034B
Public gdatServerStarted As Date

'Constant variable to hold the name of the .ini file.
'##ModelId=3B294CEA007D
Global Const gINIFILENAME As String = "hfacs"

'Reusable object variables. These variables are used over and
over
'by classes and forms. They are created and destroyed within
the
'same function whenever possible.
'--
'Reusable object variable for the INI file
'##ModelId=3B294CEB0010
Global oINIFile As INIFile

'Reusable object variable for the INI file control class
'##ModelId=3B294CEC02C1
Global oINIFileController As INIFileController

'Reusable object variable for the HFACSConnection class
'##ModelId=3B294CEE01A5
Global oHFACSConnection As HFACSConnection

'##ModelId=3B294CF0006E

Global oMSDE As MSDE 'Reusable object variable for the
MSDE Class

'Reusable object variable for the UpdateController Class
'##ModelId=3B294CF1032D
Global oUpdateController As UpdateController

'Variable to hold the path to the Windows system directory
'##ModelId=3B294CF202CE
Global gStrFileName As String 'The name of the system
directory

'INI file declarations. Each of these variables represents an
entry
'in the .ini file. These values are the core of much of the
'of this component and as such are visible to all forms and
classes.
'--
'##ModelId=3B294CF2031C
Global gStrUID As String 'The user ID

'##ModelId=3B294CF2036B
Global gStrPWD As String 'The user password

'##ModelId=3B294CF203A9
Global gStrServerName As String 'The name of the MSDE
or SQL Server

'##ModelId=3B294CF3001F
Global gStrDatabaseFileName As String 'The name of the
mdf

'##ModelId=3B294CF3006D
Global gStrDatabaseName As String 'The name of the
database

'##ModelId=3B294CF300BB
Global gStrAppPath As String 'The application path

'##ModelId=3B294CF30109
Global gStrAutoLogon As String 'Toggle to logon without
prompt

'Toggle for determining the first time the program has been
run.
'##ModelId=3B294CF30157
Global gStrFirstRun As String

'Toggle for determining if NT authentication should be used
for
'logon attempts.
'##ModelId=3B294CF301A5
Global gStrNTauth As String

'The type of DB this program will represent (mil, civ, or
both).
'##ModelId=3B294CF301F4
Global gStrTypeDB As String

'Global variable to hold the value of the current
connectionstring
'##ModelId=3B294CF30242

 312

Global gTheConnectionString As String

'Global variable to hold the value of the SQL Server
subdirectory
Global gSQLServerPath As String

'Flags for passing success or failure of form operations
'--
'Flag a success/failure of a prompted logon
'##ModelId=3B294CF30290
Global gblnPromptedLogonSuccess As Boolean

'Flag a success/failure of an FTP update attempt
'##ModelId=3B294CF302DE
Global gblnFTPSuccess As Boolean

'Flags for passing strings and integer values between forms
'--
'Message for label on frmWait. Allows you to change the
message from
'any location in this component.
'##ModelId=3B294CF3032C
Global gStrTextMessage As String

'Amount of time for frmWait to count. Allows you to set the
number
'of seconds for frmWait to actually wait.
'##ModelId=3B294CF3037A
Global gIntTimeToWait As Integer

'Reusable variable for counters throughout the component
'##ModelId=3B294CF303C8
Global gIntCounter As Integer

'Flag for indicating no copy is necessary. This is required
'when making a connection to a remote host because the SQL
Server
'2000 version of SQLDMO won't connect to a remote host.
To work
'around this, an ADO connection is attempted. If an ADO
connection
'succeeds, then the database exists on the server being
connected
'to, so no copy is needed . . . and this flag is set.
'##ModelId=3B294CF4002E
Global gblnNoCopyNeeded As Boolean

'***
' GLOBAL UTIILITY FUNCTIONS

'***

'===
'Function/Sub Name: Main()
'
'Description: This code is executed when the component
starts, in
'response to the first object request. It is the "Main"
procedure
'responsible for initializing the entire component and is
required
'for all compiled DLLs.
'
'Input: None
'
'Output: None
'
'References: None
'===
'##ModelId=3B294CF4006D
Sub Main()

 gdatServerStarted = Now()
 Debug.Print ""
 Debug.Print "Executing Sub Main . . ."

End Sub

'===
'Function/Sub Name: IsOpen()
'
'Description: Determines if a form is open or not. Useful for
'determining when screen refreshes are needed.
'
'Input: String representing the name of the form to be
checked.
'
'Output: True if the form is open, otherwise false.
'
'References: None
'===
'##ModelId=3B294CF4009C
Public Function IsOpen(szName As String) As Boolean

 IsOpen = (SysCmd(acSysCmdGetObjectState, acForm,
szName) <> 0)

End Function

 313

APPENDIX H. CLIPBOARD UTILITY

CLASS-clsClipboard

Option Explicit
'###
' CLASS DESCRIPTION
'###
'Class Name: clsClipboard
'
'Author: Pat Flanders & Scott Tufts
'
'Description: The Access 2000 VBA IDE does not allow
direct access
'to the "clipboard" object. This class wraps the functionality
'of parts of the clipboard object in VB 6.0.
'
'References: None
'
'NOTE: See function headers for internal component
references.
'###

'***
' FUNCTIONS
'***

'===
=========================
'Function/Sub Name: clipOutLandscape()
'
'Description: Prints the contents of the Windows clipboard
'Horizontally on a printed page.
'
'Input: None
'
'Output: Success or failure.
'
'References: None
'
'===
Public Function clipOutLandscape() As Boolean

 On Error GoTo StartError

 Printer.Orientation = vbPRORLandscape

 Printer.Print " "
 Printer.PaintPicture Clipboard.GetData(), 0, 0
 Printer.EndDoc

 Printer.Orientation = vbPRORPortrait

 clipOutLandscape = True

 314

THIS PAGE INTENTIONALLY LEFT BLANK

 315

APPENDIX I. FTP SERVER

CLASS-cFTP

Option Explicit
'###
' CLASS DESCRIPTION
'###
'Class Name: cFTP
'
'Author: Chris Eastwood, July 1999. Modified by Pat
Flanders &
'Scott Tufts.
'
'Description: Provides FTP functionality in a separate
process.
'This class wraps the functionality of the Win32
WinInet.DLL
'
'References: WinInet.dll via API calls -- do not reference
from
'the VB IDE.
'
'###

'***
' DECLARES
'***

Private Declare Sub Sleep Lib "kernel32" (ByVal
dwMilliseconds As Long)

Dim SaveCBK As cFTPCBK
Dim frmTimer As frmTimer

Private Const MAX_PATH = 260

Private Type FILETIME
 dwLowDateTime As Long
 dwHighDateTime As Long
End Type

Private Type WIN32_FIND_DATA
 dwFileAttributes As Long
 ftCreationTime As FILETIME
 ftLastAccessTime As FILETIME
 ftLastWriteTime As FILETIME
 nFileSizeHigh As Long
 nFileSizeLow As Long
 dwReserved0 As Long
 dwReserved1 As Long
 cFileName As String * MAX_PATH
 cAlternate As String * 14
End Type

Private Const ERROR_NO_MORE_FILES = 18
Private Declare Function InternetFindNextFile Lib
"wininet.dll" Alias "InternetFindNextFileA" (ByVal hFind
As Long, lpvFindData As WIN32_FIND_DATA) As Long

Private Declare Function FtpFindFirstFile Lib "wininet.dll"
Alias "FtpFindFirstFileA" (ByVal hFtpSession As Long,
ByVal lpszSearchFile As String, lpFindFileData As
WIN32_FIND_DATA, ByVal dwFlags As Long, ByVal
dwContent As Long) As Long

Private Declare Function FtpGetFile Lib "wininet.dll" Alias
"FtpGetFileA" (ByVal hFtpSession As Long, ByVal
lpszRemoteFile As String, ByVal lpszNewFile As String,
ByVal fFailIfExists As Boolean, ByVal
dwFlagsAndAttributes As Long, ByVal dwFlags As Long,
ByVal dwContext As Long) As Boolean

Private Declare Function FtpPutFile Lib "wininet.dll" Alias
"FtpPutFileA" (ByVal hFtpSession As Long, ByVal
lpszLocalFile As String, ByVal lpszRemoteFile As String,
ByVal dwFlags As Long, ByVal dwContext As Long) As
Boolean

Private Declare Function FtpSetCurrentDirectory Lib
"wininet.dll" Alias "FtpSetCurrentDirectoryA" (ByVal
hFtpSession As Long, ByVal lpszDirectory As String) As
Boolean
' Initializes an application's use of the Win32 Internet
functions
Private Declare Function InternetOpen Lib "wininet.dll"
Alias "InternetOpenA" (ByVal sAgent As String, ByVal
lAccessType As Long, ByVal sProxyName As String, ByVal
sProxyBypass As String, ByVal lFlags As Long) As Long

' Use registry access settings.
Private Const INTERNET_OPEN_TYPE_DIRECT = 1
Private Const INTERNET_OPEN_TYPE_PROXY = 3
Private Const INTERNET_INVALID_PORT_NUMBER = 0

Private Const FTP_TRANSFER_TYPE_ASCII = &H1
Private Const FTP_TRANSFER_TYPE_BINARY = &H2
Private Const FILE_ATTRIBUTE_NORMAL = &H80
'Added
Private Const INTERNET_FLAG_PASSIVE = &H8000000

Private Declare Function InternetConnect Lib "wininet.dll"
Alias "InternetConnectA" (ByVal hInternetSession As Long,
ByVal sServerName As String, ByVal nServerPort As
Integer, ByVal sUserName As String, ByVal sPassword As
String, ByVal lService As Long, ByVal lFlags As Long,
ByVal lContext As Long) As Long

Private Const ERROR_INTERNET_EXTENDED_ERROR
= 12003

Private Declare Function InternetGetLastResponseInfo Lib
"wininet.dll" Alias "InternetGetLastResponseInfoA"
(lpdwError As Long, ByVal lpszBuffer As String,
lpdwBufferLength As Long) As Boolean

' Type of service to access.
Private Const INTERNET_SERVICE_FTP = 1

 316

'private Const INTERNET_SERVICE_GOPHER = 2
'private Const INTERNET_SERVICE_HTTP = 3

Private Const INTERNET_FLAG_RELOAD =
&H80000000
Private Const INTERNET_FLAG_KEEP_CONNECTION =
&H400000
Private Const INTERNET_FLAG_MULTIPART =
&H200000

Private Declare Function FtpOpenFile Lib "wininet.dll" Alias
"FtpOpenFileA" (ByVal hFtpSession As Long, ByVal
sFileName As String, ByVal lAccess As Long, ByVal lFlags
As Long, ByVal lContext As Long) As Long
Private Declare Function FtpDeleteFile Lib "wininet.dll"
Alias "FtpDeleteFileA" (ByVal hFtpSession As Long, ByVal
lpszFileName As String) As Boolean

Private Declare Function FtpRenameFile Lib "wininet.dll"
Alias "FtpRenameFileA" (ByVal hFtpSession As Long,
ByVal sExistingName As String, ByVal sNewName As
String) As Boolean

' Closes a single Internet handle or a subtree of Internet
handles.
Private Declare Function InternetCloseHandle Lib
"wininet.dll" (ByVal hInet As Long) As Integer

'
' Our Defined Errors
'
Public Enum errFtpErrors
 errCannotConnect = vbObjectError + 2001
 errNoDirChange = vbObjectError + 2002
 errCannotRename = vbObjectError + 2003
 errCannotDelete = vbObjectError + 2004
 errNotConnectedToSite = vbObjectError + 2005
 errGetFileError = vbObjectError + 2006
 errInvalidProperty = vbObjectError + 2007
 errFatal = vbObjectError + 2008
End Enum

'
' File Transfer types
'
Public Enum FileTransferType
 ftAscii = FTP_TRANSFER_TYPE_ASCII
 ftBinary = FTP_TRANSFER_TYPE_BINARY
End Enum

'
' Error messages
'
Private Const ERRCHANGEDIRSTR As String = "Cannot
Change Directory to %s. It either doesn't exist, or is
protected"
Private Const ERRCONNECTERROR As String = "Cannot
Connect to %s using User and Password Parameters"
Private Const ERRNOCONNECTION As String = "Not
Connected to FTP Site"
Private Const ERRNODOWNLOAD As String = "Couldn't
Get File %s from Server"
Private Const ERRNORENAME As String = "Couldn't
Rename File %s"
Private Const ERRNODELETE As String = "Couldn't Delete
File %s from Server"

Private Const ERRALREADYCONNECTED As String =
"You cannot change this property while connected to an FTP
server"
Private Const ERRFATALERROR As String = "Cannot get
Connection to WinInet.dll !"

'
' Session Identifier to Windows
'
Private Const SESSION As String = "CGFtp Instance"
'
' Our INET handle
'
Private mlINetHandle As Long
'
' Our FTP Connection Handle
'
Private mlConnection As Long
'
' Standard FTP properties for this class
'
Private msHostAddress As String
Private msUser As String
Private msPassword As String
Private msDirectory As String

'Passed in from HFACS.DLL
Private ServerFileAndPath As String
Private DestinationFileAndPath As String
Private TransferType As FileTransferType

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Initialize()
'
'Description: Opens an Internet session.
'
'Input: None
'
'Output: None
'
'References: None

'===
Private Sub Class_Initialize()
'
' Create Internet session handle
'
 mlINetHandle = InternetOpen(SESSION,
INTERNET_OPEN_TYPE_DIRECT, vbNullString,
vbNullString, 0)

 If mlINetHandle = 0 Then
 mlConnection = 0
 Err.Raise errFatal, "CGFTP::Class_Initialise",
ERRFATALERROR
 End If

 mlConnection = 0

End Sub

 317

'===
'Function/Sub Name: Terminate()
'
'Description: Kills an Internet session.
'
'Input: None
'
'Output: None
'
'References: None

'===
Private Sub Class_Terminate()
'
' Kill off any connection
'
 If mlConnection <> 0 Then
 InternetCloseHandle mlConnection
 End If
'
' Kill off API Handle
'
 If mlINetHandle <> 0 Then
 InternetCloseHandle mlINetHandle
 End If
 mlConnection = 0
 mlINetHandle = 0

End Sub

'===
'Function/Sub Name: Connect()
'
'Description: Connect to the FTP server.
'
'Input:
' - Host - IP or name of host
' - User - User ID
' - Password - Password for FTP logon
'
'Output: Success or failure
'
'References: None

'===
Public Function Connect(Optional Host As String, _
 Optional User As String, _
 Optional Password As String) As Boolean
'
' Connect to the FTP server
'
On Error GoTo vbErrorHandler

 Dim sError As String
'
' If we already have a connection then raise an error
'
 If mlConnection <> 0 Then
 On Error GoTo 0
 Err.Raise errInvalidProperty, "CGFTP::Connect", "You
are already connected to FTP Server " & msHostAddress
 Exit Function
 End If
'
' Overwrite any existing properties if they were supplied in
the

' arguments to this method
'
 If Len(Host) > 0 Then
 msHostAddress = Host
 End If

 If Len(User) > 0 Then
 msUser = User
 End If

 If Len(Password) > 0 Then
 msPassword = Password
 End If

'
' Connect !
'

 If Len(msHostAddress) = 0 Then
 Err.Raise errInvalidProperty, "CGFTP::Connect", "No
Host Address Specified!"
 End If

 mlConnection = InternetConnect(mlINetHandle,
msHostAddress, INTERNET_INVALID_PORT_NUMBER,
_
 msUser, msPassword, INTERNET_SERVICE_FTP, 0,
0)
'
' Check for connection errors
'
 If mlConnection = 0 Then
 sError = Replace(ERRCONNECTERROR, "%s",
msHostAddress)
 On Error GoTo 0
 sError = sError & vbCrLf &
GetINETErrorMsg(Err.LastDllError)
 Err.Raise errCannotConnect, "CGFTP::Connect", sError
 End If

 Connect = True

 Exit Function

vbErrorHandler:

 Err.Raise Err.Number, "cFTP::Connect", Err.Description

End Function

'===
'Function/Sub Name: Disconnect()
'
'Description: Disconnect, only if connected
'
'Input: None
'
'Output: Success or failure
'
'References: None

'===
Public Function Disconnect() As Boolean
'
' Disconnect, only if connected !
'

 318

 On Error Resume Next
 If mlConnection <> 0 Then
 InternetCloseHandle mlConnection
 mlConnection = 0
 Else
 'Err.Raise errNotConnectedToSite,
"CGFTP::Disconnect", ERRNOCONNECTION
 End If
 msHostAddress = ""
 msUser = ""
 msPassword = ""
 msDirectory = ""

End Function

'===
'Function/Sub Name: Disconnect()
'
'Description: Disconnect, only if connected
'
'Input:
' - ServerFileAndPathIn - Name of FTP server
' - DestinationFileAndPathIn - Path to save file to
' - TransferTypeIn - Binary or Ascii
' - cbk As cFTPCBK - For use with call back
'
'Output: Success or failure
'
'References: None

'===
Sub StartGetFTP(ByVal ServerFileAndPathIn As String, _
 ByVal DestinationFileAndPathIn As String, _
 Optional TransferTypeIn As FileTransferType = ftAscii,
_
 Optional cbk As cFTPCBK)

 ServerFileAndPath = ServerFileAndPathIn
 DestinationFileAndPath = DestinationFileAndPathIn
 TransferType = TransferTypeIn

 Set SaveCBK = cbk
 ' activate the timer that will restart this thread
 Set frmTimer = New frmTimer
 With frmTimer
 Set .Owner = Me
 .Timer1.Interval = 100
 .Timer1.Enabled = True
 End With

End Sub

'===
'Function/Sub Name: GetFile()
'
'Description: Get the specified file to the desired location
using
'the specified file transfer type
'
'Input: None
'
'Output: Success or failure
'
'References: None

'===

Public Function GetFile() As Boolean

 ' this code is executed when the timer fires for the first
time
 ' unload the form and destroy it completely
 Unload frmTimer
 Set frmTimer = Nothing

 Dim bRet As Boolean
 Dim sFileRemote As String
 Dim sDirRemote As String
 Dim sFileLocal As String
 Dim sTemp As String
 Dim lPos As Long
 Dim sError As String

On Error GoTo vbErrorHandler
'
' If not connected, raise an error
'
 If mlConnection = 0 Then
 On Error GoTo 0
 Err.Raise errNotConnectedToSite, "CGFTP::GetFile",
ERRNOCONNECTION
 End If

'
' Get the file
'
 DoEvents
 bRet = FtpGetFile(mlConnection, ServerFileAndPath,
DestinationFileAndPath, False,
FILE_ATTRIBUTE_NORMAL, TransferType Or
INTERNET_FLAG_RELOAD, 0)
 DoEvents

 If bRet = False Then
 sError = ERRNODOWNLOAD
 sError = Replace(sError, "%s", ServerFileAndPath)
 On Error GoTo 0
 GetFile = False
 Err.Raise errGetFileError, "CGFTP::GetFile", sError
 End If

 GetFile = True

 ' inform the client that the process has been completed
 SaveCBK.Complete True
 ' IMPORTANT: destroy the reference to the client
 ' so that it won't be kept alive forever

ExitSub:
 Exit Function

 Set SaveCBK = Nothing

vbErrorHandler:
 GetFile = False
 SaveCBK.Complete True
 GoTo ExitSub
 'Err.Raise errGetFileError, "cFTP::GetFile",
Err.Description

End Function

'===
'Function/Sub Name: RemoteChDir()

 319

''Description: Remote Change Directory Command through
WININET
'
'Input:
' - sDir - Directory to change to
'
'Output: Success or failure
'
'References: None
'===
Private Sub RemoteChDir(ByVal sDir As String)
On Error GoTo vbErrorHandler
'
' Remote Change Directory Command through WININET
'
 Dim sPathFromRoot As String
 Dim bRet As Boolean
 Dim sError As String
'
' Needs standard Unix Convention
'
 sDir = Replace(sDir, "\", "/")
'
' Check for a connection
'
 If mlConnection = 0 Then
 On Error GoTo 0
 Err.Raise errNotConnectedToSite,
"CGFTP::RemoteChDir", ERRNOCONNECTION
 Exit Sub
 End If

 If Len(sDir) = 0 Then
 Exit Sub
 Else
 sPathFromRoot = sDir
 If Len(sPathFromRoot) = 0 Then
 sPathFromRoot = "/"
 End If
 bRet = FtpSetCurrentDirectory(mlConnection,
sPathFromRoot)
'
' If we couldn't change directory - raise an error
'
 If bRet = False Then
 sError = ERRCHANGEDIRSTR
 sError = Replace(sError, "%s", sDir)
 On Error GoTo 0
 Err.Raise errNoDirChange,
"CGFTP::ChangeDirectory", sError
 End If
 End If

 Exit Sub

vbErrorHandler:
 Err.Raise Err.Number, "cFTP::RemoteChDir",
Err.Description

End Sub

'===
'Function/Sub Name: GetINETErrorMsg()
'
'Description: Provide Error information from WinInet.
'
'Input:

' - GetINETErrorMsg - Err Num
'
'Output: Detailed error message.
'
'References: None

'===
Private Function GetINETErrorMsg(ByVal ErrNum As
Long) As String
 Dim lError As Long
 Dim lLen As Long
 Dim sBuffer As String
'
' Get Extra Info from the WinInet.DLL
'
 If ErrNum = ERROR_INTERNET_EXTENDED_ERROR
Then
'
' Get Message Size and Number
'
 InternetGetLastResponseInfo lError, vbNullString, lLen
 sBuffer = String$(lLen + 1, vbNullChar)
'
' Get Message
'
 InternetGetLastResponseInfo lError, sBuffer, lLen
 GetINETErrorMsg = vbCrLf & sBuffer
 End If
End Function

'***
'
' Public Property GET and LET statements follow
'
'***

Public Property Let Host(ByVal sHostName As String)
'
' Set the Host Name - only if not connected
'
 If mlConnection <> 0 Then
 Err.Raise errInvalidProperty, "ACNFTP:Host_Let",
ERRALREADYCONNECTED
 End If
 msHostAddress = sHostName
End Property

Public Property Get Host() As String
'
' Get Host Name
'
 Host = msHostAddress
End Property

Public Property Let User(ByVal sUserName As String)
'
' Set the user - only if not connected
'
 If mlConnection <> 0 Then
 Err.Raise errInvalidProperty, "CGFTP::User_Let",
ERRALREADYCONNECTED
 End If
 msUser = sUserName
End Property

 320

Public Property Get User() As String
'
' Get the user information
'
 User = msUser
End Property

Public Property Let Password(ByVal sPassword As String)
'
' Set the password - only if not connected
'
 If mlConnection <> 0 Then
 Err.Raise errInvalidProperty, "CGFTP::Password_Let",
ERRALREADYCONNECTED
 End If
 msPassword = sPassword
End Property

Public Property Get Password() As String
'
' Get the password
'
 Password = msPassword
End Property

Public Property Get Directory() As String
'
' Get the directory
'
 Directory = msDirectory
End Property

Public Property Let Directory(ByVal sDirectory As String)
'' Set the directory - only if connected
'
On Error GoTo vbErrorHandler

 Dim sError As String

 If Not (mlConnection = 0) Then
 RemoteChDir sDirectory
 msDirectory = sDirectory
 Else
 On Error GoTo 0
 Err.Raise errNotConnectedToSite,
"CGFTP::Directory_Let", ERRNOCONNECTION
 End If

 Exit Property

vbErrorHandler:

 Err.Raise errNoDirChange, "CGFTP::Directory[Let]",
Err.Description

End Property

Public Property Get Connected() As Boolean
'
' Are we connected to an FTP Server ? T/F
'
 Connected = (mlConnection <> 0)
End Property

 321

CLASS-cFTPCBK

Option Explicit
'##
' CLASS DESCRIPTION
'##
'Class Name: cFTPCBK
'
'Author: Pat Flanders & Scott Tufts.
'
'Description: Provides and Interface for callback to the HFACS.DLL
'Has no implementation.
'
'References: None
'
'##

'Provide the errorcode back to HFACS
Sub Complete(ErrCode As Boolean)
 '
End Sub

 322

FORMCLASS-frmTimer

Option Explicit

Public Owner As cFTP

'##
' FORM DESCRIPTION
'##
'Class Name: frmTimer
'
'Author: Pat Flanders & Scott Tufts.
'
'Description: Provides a timer to give the callback class
'time to instantiate.
'
'References: None
'
'##

Private Sub Timer1_Timer()
 ' this procedure is executed only once per each invocation
 ' disable the timer
 Timer1.Interval = 0
 Timer1.Enabled = False
 ' yield to the companion instance
 Dim bFTPResult As Boolean
 bFTPResult = Owner.GetFile()
End Sub

 323

APPENDIX J. INSTALL CD CODE

FORMCLASS-FrmMain

Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: FrmMain.frm
'
'Author: Pat Flanders & Scott Tufts
'
'This class is responsible for autorun of the installation CD
and
'providing the user an inface for the install.
'
'References: No special references required.
'
'###

'***
' PROPERTIES
'***

Private Declare Function ShellExecute Lib "shell32.dll"
Alias "ShellExecuteA" (ByVal hWnd As Long, ByVal
lpOperation As String, ByVal lpFile As String, ByVal
lpParameters As String, ByVal lpDirectory As String, ByVal
nShowCmd As Long) As Long

Const SW_MAXIMIZE = 3

Dim FileName As String
Dim WorkDir As String
Dim Error As Integer
Dim ErrorMsg As String

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Form_Load()
'
'Description: Sets up the initial menu, determines cd drive
letter,
'and plays a sound.
'
'Input: None
'
'Output: None
'
'References: None
'===

Private Sub Form_Load()

 'Determine directory of the CD drive and store it for later
use.
 WorkDir = CurDir$()
 If Right$(WorkDir, 1) <> "\" Then
 WorkDir = WorkDir & "\"
 End If

 'Play a sound.
 On Error GoTo 0
 On Error GoTo noSound
 oleSound.DoVerb (1)

noSound:

 ' Change menu color when mouse is over button
 Me.lblInstallMSDE.BackColor = &H8000000D
 Me.lblInstallMSDE.ForeColor = &H8000000E

 Me.lblInstallHFACS.BackColor = &H8000000E
 Me.lblInstallHFACS.ForeColor = &H80000008

 Me.lblWin2K.BackColor = &H8000000E
 Me.lblWin2K.ForeColor = &H80000008
 Me.lblDescription.Caption = "Microsoft SQL Server 2000
is the database engine required for HFACS-ME to function."
& Chr(13) & Chr(13) & _
 "If Microsoft SQL Server 2000 is already installed on this
machine, skip Step 1 and proceed to Step 2." & Chr(13) &
Chr(13) & _
 "PREREQUISITES: None."

End Sub

'===
'Function/Sub Name: lblWin2K_Click()
'
'Description: Opens the Step 3 HTML instruction page.
'
'Input: None
'
'Output: None
'
'References: None
'===
Private Sub lblWin2K_Click()

 FileName = "Step3.htm"
 Screen.MousePointer = vbHourglass

 On Error GoTo StartError

 Error = ShellExecute(0, "open", FileName, "", WorkDir,
SW_MAXIMIZE)
 'Me.waitFor3
 Screen.MousePointer = vbDefault

Exit Sub

 324

StartError:
 Screen.MousePointer = vbDefault
 MsgBox Err.Description
 MsgBox Err.Number

End Sub

'===
'Function/Sub Name: lblInstallHFACS_Click()
'
'Description: Launches the HFACS-ME Installation
program.
'
'Input: None
'
'Output: None
'
'References: None
'===
Private Sub lblInstallHFACS_Click()

 FileName = "HFACS-ME\setup.exe"
 Screen.MousePointer = vbHourglass

 On Error GoTo StartError

 Error = ShellExecute(0, "open", FileName, "", WorkDir,
SW_MAXIMIZE)
 'Me.waitFor3
 Screen.MousePointer = vbDefault

Exit Sub

StartError:
 Screen.MousePointer = vbDefault
 MsgBox Err.Description
 MsgBox Err.Number

End Sub

'===
'Funct ion/Sub Name:
' - lblWin2K_MouseMove
' - lblInstallHFACS_MouseMove
' - lblInstallMSDE_MouseMove
'
'Description: The next 3 functions are responsible for
changinge
'colors of menu buttons in response to mouse movements.
'
'Input: None
'
'Output: None
'
'References: None
'===
Private Sub lblWin2K_MouseMove(Button As Integer, Shift
As Integer, X As Single, Y As Single)

 ' Change menu color when mouse is over button
 Me.lblInstallMSDE.BackColor = &H8000000E
 Me.lblInstallMSDE.ForeColor = &H80000008

 Me.lblInstallHFACS.BackColor = &H8000000E
 Me.lblInstallHFACS.ForeColor = &H80000008

 Me.lblWin2K.BackColor = &H8000000D
 Me.lblWin2K.ForeColor = &H8000000E

 Me.lblDescription.Caption = "If you are installing
HFACS-ME on a computer running Windows 2000 or
Windows NT, you must manually configure settings to allow
users without 'Administrator' permissions to run it." &
Chr(13) & Chr(13) & "Clicking this button will open a link
to an HTML document with detailed instructions outlining
how to make the necessary changes."

 Me.lblDescription.Refresh
 Me.lblInstallMSDE.Refresh
 Me.lblInstallHFACS.Refresh
 Me.lblWin2K.Refresh
End Sub

Private Sub lblInstallHFACS_MouseMove(Button As
Integer, Shift As Integer, X As Single, Y As Single)

 ' Change menu color when mouse is over button
 Me.lblInstallMSDE.BackColor = &H8000000E
 Me.lblInstallMSDE.ForeColor = &H80000008

 Me.lblInstallHFACS.BackColor = &H8000000D
 Me.lblInstallHFACS.ForeColor = &H8000000E

 Me.lblWin2K.BackColor = &H8000000E
 Me.lblWin2K.ForeColor = &H80000008

 Me.lblDescription.Caption = "Installs the HFACS-ME
database and client application." & Chr(13) & Chr(13) & _
 "PREREQUISITES: " & Chr(13) & Chr(13) & " 1) IF
ACCESS 2000 IS NOT INSTALLED ON THIS
COMPUTER. There are NO prerequisites. Since you don't
have Access 2000, this installation program will install a
special runtime version." & _
 Chr(13) & Chr(13) & " 2) IF ACCESS 2000 IS
ALREADY INSTALLED ON THIS COMPUTER. The
HFACS-ME program REQUIRES Office Service Release 1
or newer to function properly. Since you already have
Access 2000 installed, you must ensure that Microsoft Office
2000 Service Release 1 (or newer) is also installed."

 Me.lblDescription.Refresh
 Me.lblInstallMSDE.Refresh
 Me.lblInstallHFACS.Refresh
 Me.lblWin2K.Refresh

End Sub

Private Sub lblInstallMSDE_MouseMove(Button As Integer,
Shift As Integer, X As Single, Y As Single)

 ' Change menu color when mouse is over button
 Me.lblInstallMSDE.BackColor = &H8000000D
 Me.lblInstallMSDE.ForeColor = &H8000000E

 Me.lblInstallHFACS.BackColor = &H8000000E
 Me.lblInstallHFACS.ForeColor = &H80000008

 Me.lblWin2K.BackColor = &H8000000E
 Me.lblWin2K.ForeColor = &H80000008
 Me.lblDescription.Caption = "Microsoft SQL Server 2000
is the database engine required for HFACS-ME to function."
& Chr(13) & Chr(13) & _

 325

 "If Microsoft SQL Server 2000 is already installed on this
machine, skip Step 1 and proceed to Step 2." & Chr(13) &
Chr(13) & _
 "PREREQUISITES: None."

 Me.lblDescription.Refresh
 Me.lblInstallMSDE.Refresh
 Me.lblInstallHFACS.Refresh
 Me.lblWin2K.Refresh

End Sub

'===
'Function/Sub Name: lblInstallMSDE_Click()
'
'Description: Launches the MSDE Installation program.
'
'Input: None
'
'Output: None
'
'References: None
'===
Private Sub lblInstallMSDE_Click()

 'MsgBox "Run: " & WorkDir & "HFACS-ME\setup.exe"

 FileName = "MSDE\setup.exe"

 Screen.MousePointer = vbHourglass
 On Error GoTo StartError

 Error = ShellExecute(0, "open", FileName, "", WorkDir,
SW_MAXIMIZE)
 'Me.waitFor3
 Screen.MousePointer = vbDefault

Exit Sub

StartError:

 Screen.MousePointer = vbDefault
 MsgBox Err.Description
 MsgBox Err.Number

End Sub

'===
'Function/Sub Name: waitFor3()
'
'Description: Waits for 3 seconds. For future use. Intended
to
'make the form invisible for 3 seconds after a button is
clicked.
'In this way the user can't accidently click another button
while
'the a program is launching.
'
'Input: None
'
'Output: None
'
'References: None
'===
Public Sub waitFor3()

 Screen.MousePointer = vbHourglass
 Dim PauseTime
 Dim Start
 Dim i As Integer
 PauseTime = 3
 Start = Timer ' Set start time.
 Do While Timer < Start + PauseTime
 DoEvents ' Yield to other processes.
 Loop
 Screen.MousePointer = vbDefault

End Sub

 326

THIS PAGE INTENTIONALLY LEFT BLANK

 327

APPENDIX K. INVESTIGATION MODULE

CLASS-clFrmWindow

Option Compare Database
Option Explicit

'***
' Type declarations
'***
Private Type RECT 'RECT structure used for API calls.
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type

Private Type POINTAPI 'POINTAPI structure used for API
calls.
 X As Long
 Y As Long
End Type

'***
' Member variables
'***
Private m_hWnd As Long 'Handle of the window.
Private m_rctWindow As RECT 'Rectangle describing the
sides of the last polled location of the window.

'***
' Private error constants for use with RaiseError procedure
'***
Private Const m_ERR_INVALIDHWND = 1
Private Const m_ERR_NOPARENTWINDOW = 2

'***
' API function declarations
'***
Private Declare Function apiIsWindow Lib "user32" Alias
"IsWindow" (ByVal hwnd As Long) As Long

Private Declare Function apiMoveWindow Lib "user32"
Alias "MoveWindow" (ByVal hwnd As Long, ByVal X As
Long, ByVal Y As Long, _
 ByVal nWidth As Long, ByVal nHeight As Long, ByVal
bRepaint As Long) As Long
 'Moves and resizes a window in the coordinate system of
its parent window.

Private Declare Function apiGetWindowRect Lib "user32"
Alias "GetWindowRect" (ByVal hwnd As Long, lpRect As
RECT) As Long
 'After calling, the lpRect parameter contains the RECT
structure describing the sides of the window in screen
coordinates.

Private Declare Function apiScreenToClient Lib "user32"
Alias "ScreenToClient" (ByVal hwnd As Long, lpPoint As
POINTAPI) As Long
 'Converts lpPoint from screen coordinates to the
coordinate system of the specified client window.

Private Declare Function apiGetParent Lib "user32" Alias
"GetParent" (ByVal hwnd As Long) As Long
 'Returns the handle of the parent window of the specified
window.

'###
' CLASS DESCRIPTION
'###
'Class Name: clFormWindow.bas
'
'Author: Pat Flanders & Scott Tufts
'
'Description: Moves and resizes a window in the coordinate
system
' of its parent window.
'
'References: None
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: RaiseError()
'
'Description: Raises a user-defined error to the calling
procedure.
'
'Input: None
'
'Output: None
'
'References: None
'===
Private Sub RaiseError(ByVal lngErrNumber As Long,
ByVal strErrDesc As String)

 ERR.Raise vbObjectError + lngErrNumber,
"clFormWindow", strErrDesc

End Sub

'===
'Function/Sub Name: UpdateWindowRect()
'
'Description: Places the current window rectangle position (in
'pixels, in coordinate system of parent window) in
m_rctWindow.
'
'Input: None
'
'Output: None

 328

'
'References: None
'===
Private Sub UpdateWindowRect()

 Dim ptCorner As POINTAPI

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 apiGetWindowRect m_hWnd, m_rctWindow
'm_rctWindow now holds window coordinates in screen
coordinates.

 If Not Me.Parent Is Nothing Then
 'If there is a parent window, convert top, left of
window from screen coordinates to parent window
coordinates.
 With ptCorner
 .X = m_rctWindow.Left
 .Y = m_rctWindow.Top
 End With

 apiScreenToClient Me.Parent.hwnd, ptCorner

 With m_rctWindow
 .Left = ptCorner.X
 .Top = ptCorner.Y
 End With

 'If there is a parent window, convert bottom, right of
window from screen coordinates to parent window
coordinates.
 With ptCorner
 .X = m_rctWindow.Right
 .Y = m_rctWindow.Bottom
 End With

 apiScreenToClient Me.Parent.hwnd, ptCorner

 With m_rctWindow
 .Right = ptCorner.X
 .Bottom = ptCorner.Y
 End With
 End If
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Sub

'===
' Public read-write properties follow
'===
Public Property Get hwnd() As Long
'Returns the value the user has specified for the window's
handle.

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 hwnd = m_hWnd
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

Public Property Let hwnd(ByVal lngNewValue As Long)
'Sets the window to use by specifying its handle.
'Only accepts valid window handles.

 If lngNewValue = 0 Or apiIsWindow(lngNewValue) Then
 m_hWnd = lngNewValue
 Else
 RaiseError m_ERR_INVALIDHWND, "The value
passed to the hWnd property is not a valid window handle."
 End If

End Property

Public Property Get Left() As Long
'Returns the current position (in pixels) of the left edge of the
window in the coordinate system of its parent window.

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 Left = m_rctWindow.Left
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

Public Property Let Left(ByVal lngNewValue As Long)
'Moves the window such that its left edge falls at the position
indicated
'(measured in pixels, in the coordinate system of its parent
window).

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 With m_rctWindow
 apiMoveWindow m_hWnd, lngNewValue, .Top,
.Right - .Left, .Bottom - .Top, True
 End With
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

'--

Public Property Get Top() As Long
'Returns the current position (in pixels) of the top edge of the
window in the coordinate system of its parent window.

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 Top = m_rctWindow.Top
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

Public Property Let Top(ByVal lngNewValue As Long)
'Moves the window such that its top edge falls at the position
indicated

 329

'(measured in pixels, in the coordinate system of its parent
window).

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 With m_rctWindow
 apiMoveWindow m_hWnd, .Left, lngNewValue,
.Right - .Left, .Bottom - .Top, True
 End With
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

'--

Public Property Get Width() As Long
'Returns the current width (in pixels) of the window.

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 With m_rctWindow
 Width = .Right - .Left
 End With
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

Public Property Let Width(ByVal lngNewValue As Long)
'Changes the width of the window to the value provided (in
pixels).

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 With m_rctWindow
 apiMoveWindow m_hWnd, .Left, .Top,
lngNewValue, .Bottom - .Top, True
 End With
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

'--

Public Property Get Height() As Long
'Returns the current height (in pixels) of the window.

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 With m_rctWindow
 Height = .Bottom - .Top
 End With
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

Public Property Let Height(ByVal lngNewValue As Long)
'Changes the height of the window to the value provided (in
pixels).

 If m_hWnd = 0 Or apiIsWindow(m_hWnd) Then
 UpdateWindowRect
 With m_rctWindow
 apiMoveWindow m_hWnd, .Left, .Top, .Right - .Left,
lngNewValue, True
 End With
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

End Property

'===
' Public read-only properties follow
'===
Public Property Get Parent() As clFormWindow
'Returns the parent window as a clFormWindow object.
'For forms, this should be the Access MDI window.

 Dim fwParent As New clFormWindow
 Dim lngHWnd As Long

 If m_hWnd = 0 Then
 Set Parent = Nothing
 ElseIf apiIsWindow(m_hWnd) Then
 lngHWnd = apiGetParent(m_hWnd)
 fwParent.hwnd = lngHWnd
 Set Parent = fwParent
 Else
 RaiseError m_ERR_INVALIDHWND, "The window
handle " & m_hWnd & " is no longer valid."
 End If

 Set fwParent = Nothing

End Property

 330

CLASS-INIFile

Option Explicit

'###
' CLASS DESCRIPTION
'###
'Class Name: INIFile.cls
'
'Author: Microsoft Corporation. Modified by Pat Flanders
&
' Scott Tufts
'
'This class creates .ini File objects used to create, delete, set,
'and get values in a standard format Microsoft .ini file. It
uses
'calls to the Windows API for efficiency.
'
'References: Windows API
'
'NOTE: See function headers for internal component
references.
'###

'***
' PROPERTIES
'***

'The name of the ini file to read
'##ModelId=3B294CFD03A9
Private msWbkName As String

'API Wrapper Code - provided by Microsoft
'##ModelId=3B294CFE0000
Private Declare Function WritePrivateProfileString Lib
"kernel32" Alias "WritePrivateProfileStringA" (ByVal
lpApplicationName As String, ByVal lpKeyName As String,
ByVal lpString As String, ByVal lpFileName As String) As
Long

'##ModelId=3B294CFE00AB
Private Declare Function GetPrivateProfileString Lib
"kernel32" Alias "GetPrivateProfileStringA" (ByVal
lpApplicationName As String, ByVal lpKeyName As Any,
ByVal lpDefault As String, ByVal lpReturnedString As
String, ByVal nSize As Long, ByVal lpFileName As String)
As Long

'##ModelId=3B294CFE0196
Private Declare Function GetWindowsDirectory Lib
"kernel32" Alias "GetWindowsDirectoryA" (ByVal lpBuffer
As String, ByVal nSize As Long) As Long

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Init()
'
'Description: If an instance of a class is created using the
psuedo-

'constructors from the Constructors.bas module, this function
is
'called to pass initial values, thereby mimicking the bahavior
of
'a constructor with arguments. Passed in values are all
required, but
'the Constructors.New_INIFile() function automatically sets
'passed-in values to global variable values if they are left
'blank.
'
'Input:
' sPassedInWorkBookName - Name of the .ini file to
manipulate
'
'Output: None
'
'References:
' - Constructors.bas
'===
'##ModelId=3B294CFE0213
Friend Sub Init(sPassedInWorkBookName As String)

 msWbkName = sPassedInWorkBookName

End Sub

'===
'Function/Sub Name: WriteToIniFile()
'
'Description: Write a section, key, and value to an .ini file.
'
'Input:
' strSection - Name of a section
' strKey - Name of a key
' strValue - Name of a key value
' strFileName - Name of the file to manipulate
'
'Output: Success or failure
'
'References: None
'===
'##ModelId=3B294CFE0251
Friend Function WriteToIniFile(strSection As String, strKey
As String, strValue As String, strFileName As String) As
Boolean

 ' Pass in name of section, key, key value, and file name.
 If WritePrivateProfileString(strSection, strKey, _
 strValue, strFileName) Then
 WriteToIniFile = True
 Else
 MsgBox "Error writing to .ini file: " & Err.LastDllError
 WriteToIniFile = False
 End If

End Function

'===
'Function/Sub Name: DeleteIniSection()
'
'Description: Delete a section and all of its keys from an .ini
file.
'

 331

'Input:
' strSection - Name of a section
' strFileName - Name of the file to manipulate
'
'Output: Success or failure
'
'References: None
'===
'##ModelId=3B294CFE02DE
Friend Function DeleteIniSection(strSection As String,
strFileName As String) As Boolean

 If WritePrivateProfileString(strSection, vbNullString, _
 vbNullString, strFileName) Then
 DeleteIniSection = True
 Else
 MsgBox "Error deleting section from .ini file: " _
 & Err.LastDllError
 DeleteIniSection = False
 End If

End Function

'===
'Function/Sub Name: DeleteIniKey()
'
'Description: Delete a key and its value from an .ini file.
'
'Input:
' strSection - Name of a section
' strKey - Name of a key
' strFileName - Name of the file to manipulate
'
'Output: Success or failure
'
'References: None
'===
'##ModelId=3B294CFE033C
Friend Function DeleteIniKey(strSection As String, strKey
As String, strFileName As String) As Boolean

 If WritePrivateProfileString(strSection, strKey, _
 vbNullString, strFileName) Then
 DeleteIniKey = True
 Else
 MsgBox "Error deleting section from .ini file: " _
 & Err.LastDllError
 DeleteIniKey = False
 End If

End Funct ion

'===
'Function/Sub Name: GetIniFileName()
'
'Description: Return name for .ini file. Name includes name
of
'workbook file and ".ini". File path can be made the Windows
directory.
'by uncommenting the code below
'
'Input: None
'
'Output: String path (e.g. C:\windows\HFACS.ini).
'
'References: None

'===
'##ModelId=3B294CFE03A9
Friend Function GetIniFileName() As String

 Dim strWinDir As String
 Dim lngLen As Long

 ' Create null-terminated string to pass to
 ' GetWindowsDirectory.
' strWinDir = String$(255, vbNullChar)

' lngLen = Len(strWinDir)

 ' Return Windows directory.
' GetWindowsDirectory strWinDir, lngLen

 ' Truncate before first null character.
 ' strWinDir = Left(strWinDir, _
' InStr(strWinDir, vbNullChar) - 1)

 ' Return .ini file name.
 ' GetIniFileName = strWinDir & "\" & msWbkName &
".ini"

 GetIniFileName = App.Path & "\" & msWbkName & ".ini"

End Function

'===
'Function/Sub Name: ReadFromIniFile()
'
'Description: Read a value from an .ini file, given the file
name,
'section, key, and default value to return if key is not found.
'
'Input:
' strSection - Name of a section
' strKey - Name of a key
' strDefault - Default name of a key value
' strFileName - Name of the file to manipulate
'
'Output: Success or failure
'
'References: None
'===
'##ModelId=3B294CFE03D8
Friend Function ReadFromIniFile(strFileName As String,
strSection As String, strKey As String, Optional strDefault
As String = "") As String

 Dim strValue As String

 ' Fill string buffer with null characters.
 strValue = String$(255, vbNullChar)

 ' Attempt to read value. GetPrivateProfileString
 ' function returns number of characters written
 ' into string.
 If GetPrivateProfileString(strSection, strKey, _
 strDefault, strValue, Len(strValue), _
 strFileName) > 0 Then
 ' If characters have been written into string, parse string
 ' and return.
 strValue = Left(strValue, InStr(strValue, vbNullChar) -
1)
 ReadFromIniFile = strValue
 Else

 332

 ' Otherwise, return a zero-length string.
 ReadFromIniFile = strDefault
 End If

End Function

 333

FORMCLASS-1-0-0-0-frm-SelectMishap

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-0-frm-SelectMishap
'
'Author: Pat Flanders & Scott Tufts
'
'This class is displays all the Mishaps in the database an
allows the
'user to sort them by vario us fields in order to select a mishap
'to view or edit. It has buttons that allow initiation of a new
'Mishap or deletion of an existing mishap.
'
'References:
' - 1-0-0-1-subFrm-SelectMishap
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdDone_Click()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdDone_Click()

 DoCmd.Quit

End Sub

'===
'Function/Sub Name: cmdViewMishap_Click()
'
'Description: Opens the mishap selected in the subform.
'
'Input: None
'
'Output: None
'
'References: GlobalDeclarations.gLngMishapToGet is a
global variable
'holding the value of the mishap ID
'
'===
Private Sub cmdViewMishap_Click()

 On Error GoTo errorHandler
 GlobalDeclarations.gLngMishapToGet =
Me.Manage_Mishaps.Form![MishapID]
 Me.TxtGlobalFocus.Value =
GlobalDeclarations.gLngMishapToGet
 Me.Visible = False

 Dim stLinkCriteria As String
 stLinkCriteria = "[MishapID]= " &
GlobalDeclarations.gLngMishapToGet
 DoCmd.OpenForm "1-0-0-2-frm-EditMishap", , ,
stLinkCriteria
 Exit Sub

errorHandler:
 DoCmd.Beep
 MsgBox "There are no Mishaps to select!", vbOKOnly +
vbExclamation, "Error"

End Sub

'===
'Function/Sub Name: cmdAdd_Click()
'
'Description: Opens the add mishap wizard.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdAdd_Click()

 Me.Visible = False
 DoCmd.OpenForm "1-0-0-5-frm-AddMishap"

End Sub

'===
'Function/Sub Name: cmdKill_Click()
'
'Description: Deletes the mishap selected in the subform.
'
'Input: None
'
'Output: None
'
'References: GlobalDeclarations.gLngMishapToGet is a
global variable
'holding the value of the mishap ID
'
'===
Private Sub cmdKill_Click()

 On Error GoTo errorHandler
 GlobalDeclarations.gLngMishapToGet =
Me.Manage_Mishaps.Form![MishapID]
 Me.TxtGlobalFocus.Value =
GlobalDeclarations.gLngMishapToGet

 334

 Dim response As Variant

 DoCmd.Beep
 response = MsgBox("You are about to permanently delete
the record for MISHAP #" & Me.TxtGlobalFocus.Value & "
and all its related Factors." & Chr(13) & Chr(13) & "It is
STRONGLY recommended that you do not delete mishaps
from the database because this removes all references of
them." & Chr(13) & Chr(13) & "Do you want to delete this
Mishap record despite this warning?", vbYesNo +
vbQuestion + vbDefaultButton2, "Permanently Delete
Mishap?")

 If response = vbYes Then

 DoCmd.SetWarnings False
 DoCmd.OpenQuery "1-0-0-2-DeleteMishapAndFactors"
 DoCmd.SetWarnings True
 Me.Manage_Mishaps.Requery

 End If

 Exit Sub

errorHandler:

 DoCmd.Beep
 MsgBox "There are no Mishaps to delete!", vbOKOnly +
vbExclamation, "Error"

End Sub

'===
'Function/Sub Name: Form_Activate()
'
'Description: Update the menu bar and see if the subform
needs to
'be refreshed.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Activate()

 'Refresh the form if returning from a process that made it
dirty.
 If GlobalDeclarations.gFormNeedsRefresh = True Then
 Me.Manage_Mishaps.Requery
 GlobalDeclarations.gFormNeedsRefresh = False
 End If

End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'

'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "1-0-0-0-frm-SelectMishap"
End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: Updates the menu bar and sets the MainMenu
form to
'invisible so that the screen is easier to view.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Open(Cancel As Integer)

 'On Error Resume Next

 GlobalDeclarations.synchFileDBTypeToDbValue

 Me.TxtGlobalFocus.Value =
GlobalDeclarations.gLngMishapToGet

 'DoCmd.GoToControl "Manage_Mishaps"

End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm

 335

 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2

 End With
 Set fwForm = Nothing

End Sub

 336

FORMCLASS-1-0-0-1-subfrm-SelectMishap

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-1-subfrm-SelectMishap
'
'Author: Pat Flanders & Scott Tufts
'
'This class is used in a form/subform relationship with the
'1-0-0-0-frm-SelectMishap form. It displays the mishaps in a
'sortable order.
'
'References:
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Form_Open()
'
'Description: Sets color values for the columns in the form as
well
'as initial sort order.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Open(Cancel As Integer)

 Me.tglDecending.Value = 0
 Me.OrderBy = "[MishapDate] ASC"
 Me.MishapDate.ForeColor = RGB(10, 140, 50)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)

End Sub

'===
'Function/Sub Name: Frame97_AfterUpdate()
'
'Description: Logic module that reacts to radio button clicks.
Sorts
'the data on the form in the order specified.
'
'Input: None

'
'Output: None
'
'References: None
'
'===
Private Sub Frame97_AfterUpdate()

 If Me.Frame97 = 1 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[MishapDate] DESC"
 Else
 Me.OrderBy = "[MishapDate] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(10, 140, 50)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 2 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[OrgID_FK] DESC"
 Else
 Me.OrderBy = "[OrgID_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(10, 140, 50)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 3 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[Aircraft_FK] DESC"
 Else
 Me.OrderBy = "[Aircraft_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(10, 140, 50)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 4 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[Class_FK] DESC"
 Else
 Me.OrderBy = "[Class_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(10, 140, 50)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 5 Then

 337

 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[MishapLocation] DESC"
 Else
 Me.OrderBy = "[MishapLocation] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(10, 140, 50)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 6 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[Type_FK] DESC"
 Else
 Me.OrderBy = "[Type_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(10, 140, 50)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 7 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[MishapID] DESC"
 Else
 Me.OrderBy = "[MishapID] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(10, 140, 50)
 End If

End Sub

'===
'Function/Sub Name: lblMore_Click()
'
'Description: Reacts to the click of the "More..." box in each
row
'of the data in the form. Opens a form that displays a more
detailed
'description of the mishap because these descriptions are too
big
'to fit in the datagrid of the form.
'
'Input: None
'
'Output: None
'
'References:
' - 1-0-0-3-PopUpFrm-MishapDescription
'
'===
Private Sub lblMore_Click()
 GlobalDeclarations.gStrDescription =
Me.lblDescription.Value

 DoCmd.OpenForm "1-0-0-3-PopUpFrm-
MishapDescription"
End Sub

'===
'Function/Sub Name: tglDecending_AfterUpdate()
'
'Description: Logic module that sorts the data on the form in
'acending or descending order based on the state of the toggle
button.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub tglDecending_AfterUpdate()

 If Me.Frame97 = 1 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[MishapDate] DESC"
 Else
 Me.OrderBy = "[MishapDate] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(10, 140, 50)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 2 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[OrgID_FK] DESC"
 Else
 Me.OrderBy = "[OrgID_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(10, 140, 50)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 3 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[Aircraft_FK] DESC"
 Else
 Me.OrderBy = "[Aircraft_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(10, 140, 50)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 4 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[Class_FK] DESC"
 Else
 Me.OrderBy = "[Class_FK] ASC"

 338

 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(10, 140, 50)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 5 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[MishapLocation] DESC"
 Else
 Me.OrderBy = "[MishapLocation] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(10, 140, 50)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 6 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[Type_FK] DESC"
 Else

 Me.OrderBy = "[Type_FK] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(10, 140, 50)
 Me.MishapID.ForeColor = RGB(0, 0, 0)
 End If
 If Me.Frame97 = 7 Then
 If Me.tglDecending.Value = -1 Then
 Me.OrderBy = "[MishapID] DESC"
 Else
 Me.OrderBy = "[MishapID] ASC"
 End If
 Me.MishapDate.ForeColor = RGB(0, 0, 0)
 Me.OrgID_FK.ForeColor = RGB(0, 0, 0)
 Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
 Me.Class_FK.ForeColor = RGB(0, 0, 0)
 Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
 Me.Type_FK.ForeColor = RGB(0, 0, 0)
 Me.MishapID.ForeColor = RGB(10, 140, 50)
 End If

End Sub

 339

FORMCLASS-1-0-0-2-frm-EditMishap

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-2-frm-EditMishap
'
'Author: Pat Flanders & Scott Tufts
'
'This class is used to edit mishaps and add factors. It is
similar
'to the 2-0-1-2-subFrm-View mishaps class, but offers the
additional
'capability to edit the data in the underlying tables.
'
'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance
' - 1-0-0-4-subFrm-Factors
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdCancel_Click()
'
'Description: Closes the form undoing changes BUT ONLY
for events
'that have not already been refreshed. For example, if you
add
'a factor, the entire form is refreshed . . . so clicking cancel
'cannot undo the addition of the factor - you have to use the
'delete button. This function is only capble of undoing
actions
'made to controls in the top portion of the form, and then,
only
'if a refresh has not yet been committed.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdCancel_Click()

On Error GoTo Err_cmdCancel_Click

 DoCmd.DoMenuItem acFormBar, acEditMenu, acUndo, ,
acMenuVer70
 DoCmd.Close

Exit_cmdCancel_Click:
 Exit Sub

Err_cmdCancel_Click:
 DoCmd.Close

End Sub

'===
'Function/Sub Name: cmdCodeMaintenance_Click()
'
'Description: Opens the code maintenance form.
'
'Input: None
'
'Output: None
'
'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance
'
'===
Private Sub cmdCodeMaintenance_Click()
 DoCmd.OpenForm "1-0-0-7-PopUpFrm-
CodeMaintenance"
End Sub

'===
'Function/Sub Name: cmdSave_Click()
'
'Description: Saves the state of the data and closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdSave_Click()

 On Error GoTo Err_Blanks:

 DoCmd.Requery
 DoCmd.Close
 Exit Sub

Err_Blanks:
 DoCmd.Beep
 MsgBox "The MishapDate field is a mandatory entry.",
vbOKOnly, "Error"

End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===

 340

Private Sub Form_Close()
 Forms![1-0-0-0-frm-SelectMishap].Visible = True
End Sub

'===
'Function/Sub Name: Form_Dirty()
'
'Description: If changes are made to the mishap displayed in
this form
'then the 1-0-0-0-frm-SelectMishap form will need to be
updated when
'this form is closed. This function flags a global variable so
that
'when the 1-0-0-0-frm-SelectMishap form is reactivated, it
refreshes
'to display the changes.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Dirty(Cancel As Integer)
 'MsgBox "The form is now dirty"
 GlobalDeclarations.gFormNeedsRefresh = True
End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "1-0-0-2-frm-EditMishap"
End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: If this form is opened from the 1-0-0-5-frm-
AddMishap
'then the record that was just added needs to be viewed in this
form
'otherwise, it will display the record passed to it in the
'GlobalDeclarations.gLngMishapToGet global variable.
'Input: None
'
'Output: None
'
'References:
' - GlobalDeclarations
'

'===
Private Sub Form_Open(Cancel As Integer)

 'Check to see if you are coming here from the Add Mishap
Wizard or just
 'from the select mishap form.
 If GlobalDeclarations.gBlnAddAMishap = True Then
'Came from the add form, so close it.
 DoCmd.Close acForm, "1-0-0-5-frm-AddMishap"
 GlobalDeclarations.gBlnAddAMishap = False

 'Set the Title in the form header
 Me.txtTitle.Value = [MishapID] & " - " & [OrgName] &
" - " & [Aircraft_FK]
 Else
 'Set the Title in the form header
 Me.txtTitle.Value = [MishapID] & " - " & [OrgName] &
" - " & [Aircraft_FK]
 End If

End Sub

'===
'Function/Sub Name: cmdPreview_Click()
'
'Description: Opens the Mishap Snapshot report.
'
'Input: None
'
'Output: None
'
'References:
' - 1-0-MishapSnapshot-OpenMishaps
'
'===
Private Sub cmdPreview_Click()

 Me.Refresh

 GlobalDeclarations.gLngMishapToGet = Me.txtMishapID

 On Error GoTo StartError
 Dim stDocName As String
 Dim stLinkCriteria As String
 stDocName = "1-0-MishapSnapshot-OpenMishaps"
 stLinkCriteria = "[MishapID]= " &
GlobalDeclarations.gLngMishapToGet
 DoCmd.OpenReport stDocName, A_PREVIEW, ,
stLinkCriteria

 Exit Sub

StartError:

 DoCmd.Beep
 MsgBox "There are no Mishaps to select or you do not have
a default printer installed.", vbOKOnly + vbExclamation,
"Error"

End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm

 341

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'

'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 342

FORMCLASS-1-0-0-3-PopUpFrm-MishapDescription

Option Compare Database
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-3-PopUpFrm-MishapDescription
'
'Author: Pat Flanders & Scott Tufts
'
'This class is
'
'References:
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

' FUNCTIONS
'***

'===
'Function/Sub Name: cmdDone_Click()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdDone_Click()
 DoCmd.Close acForm, "1-0-0-3-PopUpFrm-
MishapDescription"
End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "1-0-0-3-PopUpFrm-
MishapDescription"

End Sub

'===
'Function/Sub Name: Form_Open()
'
'Description: Updates the menu bar and sets shows the value
of the
'description for the mishap stored in the
GlobalDeclarations.gStrDescription
'global variable.
'
'Input: None
'
'Output: None
'
'References:
' - GlobalDeclarations
'
'===
Private Sub Form_Open(Cancel As Integer)

 Me.txtDescription = GlobalDeclarations.gStrDescription
End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 343

FORMCLASS-1-0-0-4-Subfrm-Factors

'Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-4-subfrm-Factors
'
'Author: Pat Flanders & Scott Tufts
'
'This class is used in a form/subform relationship with the
'1-0-0-2-frm-EditMishap form to display, add, and delete
factors
'to a mishap.
'
'References:
' - 1-0-0-2-frm-EditMishap
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdAddFactor_Click()
'
'Description: Adds a blank factor to the mishap indicated by
the
'GlobalDeclarations.gLngMishapToGet global variable.
'
'Input: None
'
'Output: None
'
'References:
' - GlobalDeclarations
'
'===
Private Sub cmdAddFactor_Click()

 On Error GoTo Err_cmdAddFactor_Click

 DoCmd.SetWarnings (False) 'Turn off warning messages
 Me.AllowAdditions = True 'Toggle the form to allow
addition of records

 DoCmd.GoToRecord , , acNewRec 'Create a new record

 Me.txtMishapID.Value =
GlobalDeclarations.gLngMishapToGet 'Set the value of the
Mishap
 Me.txtFactorSummary.Value = "Please enter a short
summary description of the Factor."
 Me.cbo3rdLevelCode.Value = "UNK"
 DoCmd.DoMenuItem acFormBar, acRecordsMenu,
acSaveRecord, , acMenuVer70 'Save the record
 Me.AllowAdditions = False 'Toggle back to not allow
addition of records
 Me.Refresh 'Refresh so the user can see the changes
 Me.Recordset.MoveLast 'Move to the record just created
 DoCmd.SetWarnings (True)

Exit_cmdAddFactor_Click:
 Exit Sub

Err_cmdAddFactor_Click:

 MsgBox ERR.Description
 Resume Exit_cmdAddFactor_Click

End Sub

'===
'Function/Sub Name: cmdDelFactor_Click()
'
'Description: Deletes the factor with the current focus.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdDelFactor_Click()
On Error GoTo Err_cmdDelFactor_Click

 DoCmd.DoMenuItem acFormBar, acEditMenu, 8, ,
acMenuVer70
 DoCmd.DoMenuItem acFormBar, acEditMenu, 6, ,
acMenuVer70

Exit_cmdDelFactor_Click:
 Exit Sub

Err_cmdDelFactor_Click:
 MsgBox ERR.Description
 Resume Exit_cmdDelFactor_Click

End Sub

 344

FORMCLASS-1-0-0-5-frm-AddMishap

Option Compare Database
Option Explicit

'Placekeeper for current wizard page number.
Dim iPageNumber As Integer

'Tracks posit ion of 1st Level Factor being input.
Dim iFirstLevelCounter As Integer

'For hiding the back button when appropriate
Dim bHideBackButton As Boolean

'Tracks number of factors added so far
Dim iFactorsAddedCounter As Integer

'For closing the program and returning to main.
Dim bBackToMain As Boolean

'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-5-frm-AddMishap
'
'Author: Pat Flanders & Scott Tufts
'
'This class is a wizard used to add Mishaps to the database.
The
'illusion of many forms is created using a TAB control on the
form
'and setting the "tab sytle" property to "None". THIS IS
IMPORTANT.
'The only way to edit the other pages of the tab control is to
'set the tab property to "Tabs" when the form is in design
view
'and then change it back to "None" when finished. If you
don't
'do this, you cannot edit any of the pages of the wizard except
'the first one.
'
'After a mishap is added, the 1-0-0-2-frm-EditMishap form is
'opened with the newly added Mishap selected for editing.
This
'allows the user to immediately add Factors without having to
'go back to the main menu.
'
'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance
' - 1-0-0-2-frm-EditMishap
' - clFormWindow
' - ez_SizingFunctions
' - GlobalDeclarations
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdBack_Click()

'
'Description: Switches form focus back one tab in the tab
view
'control.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdBack_Click()

 businessLogicBackward (iPageNumber)

End Sub

'===
'Function/Sub Name: cmdNext_Click()
'
'Description: Switches form focus forward one tab in the tab
view
'control.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdNext_Click()

 If iPageNumber = 0 Then iPageNumber = iPageNumber +
1
 businessLogicForward (iPageNumber)

End Sub

'===
'Function/Sub Name: cmdFinish_Click()
'
'Description: Adds the mishap to the database and opens the
edit
'form so that the user can add factors.
'
'Input: None
'
'Output: None
'
'References:
' - 1-0-0-2-frm-EditMishap
'
'===
Private Sub cmdFinish_Click()

 On Error GoTo StartError

 Me.Visible = False
 Dim stLinkCriteria As String
 stLinkCriteria = "[MishapID]= " &
GlobalDeclarations.gLngMishapToGet

 345

 DoCmd.OpenForm "1-0-0-2-frm-EditMishap", , ,
stLinkCriteria

ExitSub:
 Exit Sub

StartError:
 DoCmd.Beep
 MsgBox "You have left at least one field in this wizard
blank. All entries are mandatory. P lease go back and input
data for all fields.", vbOKOnly, "All Entries Are Mandatory"
 Resume ExitSub

End Sub

'===
'Function/Sub Name: cmdCodeMaintenance_Click()
'
'Description: Opens the code maintenance form.
'
'Input: None
'
'Output: None
'
'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance
'
'===
Private Sub cmdCodeMaintenance_Click()
 DoCmd.OpenForm "1-0-0-7-PopUpFrm-
CodeMaintenance"
End Sub

'===
'Function/Sub Name:
' - cmdCrewCoord_Click()
' - cmdEnvironmental_Click()
' - cmdEquipment_Click()
' - cmdError_Click()
' - cmdMedical_Click()
' - cmdOrganizational_Click()
' - cmdReadiness_Click()
' - cmdSupervisory_Click()
' - cmdViolation_Click()
' - cmdWorkspace_Click()
'
'Description: For controlling movement between pages not
capable of
'movement using the "next" function
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdCrewCoord_Click()
 iPageNumber = 11
 DoCmd.GoToControl "Page11"
 Me.cmdNext.Enabled = True
End Sub

Private Sub cmdEnvironmental_Click()
 iPageNumber = 13
 DoCmd.GoToControl "Page13"

 Me.cmdNext.Enabled = True
End Sub

Private Sub cmdEquipment_Click()
 iPageNumber = 14
 DoCmd.GoToControl "Page14"
 Me.cmdNext.Enabled = True
End Sub

Private Sub cmdError_Click()
 iPageNumber = 16
 DoCmd.GoToControl "Page16"
 Me.cmdNext.Enabled = True
End Sub

Private Sub cmdMedical_Click()
 iPageNumber = 10
 DoCmd.GoToControl "Page10"
 Me.cmdNext.Enabled = True
End Sub
Private Sub cmdOrganizational_Click()
 iPageNumber = 8
 DoCmd.GoToControl "Page8"
 Me.cmdNext.Enabled = True
End Sub

Private Sub cmdReadiness_Click()
 iPageNumber = 12
 DoCmd.GoToControl "Page12"
 Me.cmdNext.Enabled = True
End Sub

Private Sub cmdSupervisory_Click()
 iPageNumber = 9
 DoCmd.GoToControl "Page9"
 Me.cmdNext.Enabled = True
End Sub

Private Sub cmdViolation_Click()
 iPageNumber = 17
 DoCm d.GoToControl "Page17"
 Me.cmdNext.Enabled = True
End Sub

Private Sub cmdWorkspace_Click()
 iPageNumber = 15
 DoCmd.GoToControl "Page15"
 Me.cmdNext.Enabled = True
End Sub

'===
'Function/Sub Name: Form_Close()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References:
' - 1-0-0-0-frm-SelectMishap
'
'===
Private Sub Form_Close()

 If bBackToMain = True Then
 Forms![1-0-0-0-frm-SelectMishap].Visible = True

 346

 End If

End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "1-0-0-5-frm-AddMishap"
End Sub

'===
'Function/Sub Name: Form_Open(Cancel As Integer)
'
'Description: Initializes all variables.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub Form_Open(Cancel As Integer)

 bBackToMain = False

 'Set initial values on page 1
 Me.txtDate.Value = Format(Now(), "dd-mmm-yyyy")
 Me.cboAircraftType.Value = "Unknown"
 Me.cboOrganization.Value = "UNK"
 Me.cboLocation.Value = "UNK"
 Me.txtShortDescription.Value = "Please enter a short
description."
 Me.txtLongDescription.Value = "Please enter a long
description."

 'Set the database type
 GlobalDeclarations.getDBType
 Me.txtDatabaseType.Value =
GlobalDeclarations.gstrDatabaseType

 'Set initial value of the checkboxes on page 18
 Me.chkP18MgmtCond.Value = False
 Me.chkP18MaintCond.Value = False
 Me.chkP18WorkCond.Value = False
 Me.chkP18MaintActs.Value = False

 'Set initial values of combo and text boxes on pages 8-17
 Me.cbo3rdLevelCode8.Value = "DES"
 Me.cbo3rdLevelCode9.Value = "IDQ"
 Me.cbo3rdLevelCode10.Value = "LIM"

 Me.cbo3rdLevelCode11.Value = "ADA"
 Me.cbo3rdLevelCode12.Value = "CRT"
 Me.cbo3rdLevelCode13.Value = "EHZ"
 Me.cbo3rdLevelCode14.Value = "DUC"
 Me.cbo3rdLevelCode15.Value = "CON"
 Me.cbo3rdLevelCode16.Value = "JDG"
 Me.cbo3rdLevelCode17.Value = "IFC"
 Me.txtFactorSummary8.Value = "No description entered,
yet."
 Me.txtFactorSummary9.Value = "No description entered,
yet."
 Me.txtFactorSummary10.Value = "No description entered,
yet."
 Me.txtFactorSummary11.Value = "No description entered,
yet."
 Me.txtFactorSummary12.Value = "No description entered,
yet."
 Me.txtFactorSummary13.Value = "No description entered,
yet."
 Me.txtFactorSummary14.Value = "No description entered,
yet."
 Me.txtFactorSummary15.Value = "No description entered,
yet."
 Me.txtFactorSummary16.Value = "No description entered,
yet."
 Me.txtFactorSummary17.Value = "No description entered,
yet."

 'Set the initial value of the factors counter
 iFactorsAddedCounter = 0
 Me.txtFactorCounter.Value = iFactorsAddedCounter

End Sub

'===
'Function/Sub Name: txtDate_GotFocus()
'
'Description: Ensures date fields are properly formatted to
medium
'date.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub txtDate_GotFocus()
 'Format the date in the textbox so the time doesn't appear
 Me.txtDate = Format([txtDate], "Medium Date")
End Sub

'***
' LOGIC SUBROUTINES
'***

'===
'Function/Sub Name: businessLogicForward()
'
'Description: Logic to determine what page to go in the
forward
'direction.
'

 347

'Input:
' - pageCurrentlyAt - The page with the current focus.
'
'Output: None
'
'References: None
'
'===
Private Sub businessLogicForward(pageCurrentlyAt As
Integer)

 Select Case pageCurrentlyAt

 Case 1
 If Trim(Me.txtLongDescription.Value) = "" Then
 Me.txtLongDescription.Value = "Please enter a
long description."
 End If
 If IsNull(Me.txtLongDescription.Value) Then
 Me.txtLongDescription.Value = "Please enter a
long description."
 End If
 Me.cmdBack.Enabled = True
 Me.cmdCodeMaintenance.Visible = False
 iPageNumber = iPageNumber + 1
 DoCmd.GoToControl "Page" & iPageNumber

 Case 2
 Select Case Me.fraInjuries

 Case 1 To 2
 Me.cboClass.Value = "A"

 Case 3 To 4
 If Me.fraDamage = 1 Or Me.fraDamage = 2
Then
 Me.cboClass.Value = "A"
 Else
 Me.cboClass.Value = "B"
 End If

 Case 5
 If Me.fraDamage = 1 Or Me.fraDamage = 2
Then
 Me.cboClass.Value = "A"
 ElseIf Me.fraDamage = 3 Then
 Me.cboClass.Value = "B"
 Else
 Me.cboClass.Value = "C"
 End If

 Case 6
 If Me.fraDamage = 1 Or Me.fraDamage = 2
Then
 Me.cboClass.Value = "A"
 ElseIf Me.fraDamage = 3 Then
 Me.cboClass.Value = "B"
 ElseIf Me.fraDamage = 4 Then
 Me.cboClass.Value = "C"
 ElseIf Me.fraDamage = 5 Then
 MsgBox "The criteria you selected for damage
and injuries " & _
 "does not qualify as a reportable mishap.",
vbOKOnly + vbInformation, "Mishap Does Not Qualify"
 Exit Sub
 End If

 End Select

 iPageNumber = iPageNumber + 1
 DoCmd.GoToControl "Page" & iPageNumber

 Case 3

 Select Case Me.fraType

 Case 1
 If Me.fraType = 1 Then
 Me.cboType = "FM"
 End If

 Case 2
 If Me.fraType = 2 Then
 Me.cboType = "FRM"
 End If

 Case 3
 If Me.fraType = 3 Then
 Me.cboType = "AGM"
 End If

 End Select

 'Code to save the mishap goes here
 addMishap
 GlobalDeclarations.gLngMishapToGet =
Me.TxtGlobalFocus.Value
 GlobalDeclarations.gBlnAddAMishap = True
 GlobalDeclarations.gFormNeedsRefresh = True

 Me.cmdBack.Enabled = False
 iPageNumber = 18
 iFirstLevelCounter = 1
 DoCmd.GoToControl "Page18"

 Case 4 To 7
 'Do nothing. Button is disabled

 Case 8
 If Trim(Me.txtFactorSummary8.Value) = "" Then
 Me.txtFactorSummary8.Value = "No description
entered, yet."
 End If

 If Trim(Me.cbo3rdLevelCode8.Value) = "" Then
 MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"
 Else
 addFactor Me.cbo3rdLevelCode8.Value,
Me.txtFactorSummary8.Value
 Me.txtFactorSummary8.Value = "No description
entered, yet."
 MsgBox "Factor added to database.", vbOKOnly +
vbInformation, "Success"
 If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 End If

 Case 9
 If Trim(Me.txtFactorSummary9.Value) = "" Then
 Me.txtFactorSummary9.Value = "No description
entered, yet."
 End If

 348

 If Trim(Me.cbo3rdLevelCode9.Value) = "" Then
 MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"
 Else
 addFactor Me.cbo3rdLevelCode9.Value,
Me.txtFactorSummary9.Value
 Me.txtFactorSummary9.Value = "No description
entered, yet."
 MsgBox "Factor added to database.", vbOKOnly +
vbInformation, "Success"
 If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 End If

 Case 10
 If Trim(Me.txtFactorSummary10.Value) = "" Then
 Me.txtFactorSummary10.Value = "No description
entered, yet."
 End If

 If Trim(Me.cbo3rdLevelCode10.Value) = "" Then
 MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"
 Else
 addFactor Me.cbo3rdLevelCode10.Value,
Me.txtFactorSummary10.Value
 Me.txtFactorSummary10.Value = "No description
entered, yet."
 MsgBox "Factor added to database.", vbOKOnly +
vbInformation, "Success"
 If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 End If

 Case 11
 If Trim(Me.txtFactorSummary11.Value) = "" Then
 Me.txtFactorSummary11.Value = "No description
entered, yet."
 End If

 If Trim(Me.cbo3rdLevelCode11.Value) = "" Then
 MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"
 Else
 addFactor Me.cbo3rdLevelCode11.Value,
Me.txtFactorSummary11.Value
 Me.txtFactorSummary11.Value = "No description
entered, yet."
 MsgBox "Factor added to database.", vbOKOnly +
vbInformation, "Success"
 If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 End If

 Case 12
 If Trim(Me.txtFactorSummary12.Value) = "" Then
 Me.txtFactorSummary12.Value = "No description
entered, yet."
 End If

 If Trim(Me.cbo3rdLevelCode12.Value) = "" Then

 MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"
 Else
 addFactor Me.cbo3rdLevelCode12.Value,
Me.txtFactorSummary12.Value
 Me.txtFactorSummary12.Value = "No description
entered, yet."
 MsgBox "Factor added to database.", vbOKOnly +
vbInformation, "Success"
 If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 End If

 Case 13
 If Trim(Me.txtFactorSummary13.Value) = "" Then
 Me.txtFactorSummary13.Value = "No description
entered, yet."
 End If

 If Trim(Me.cbo3rdLevelCode13.Value) = "" Then
 MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"
 Else
 addFactor Me.cbo3rdLevelCode13.Value,
Me.txtFactorSummary13.Value
 Me.txtFactorSummary13.Value = "No description
entered, yet."
 MsgBox "Factor added to database.", vbOKOnly +
vbInformation, "Success"
 If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 End If

 Case 14
 If Trim(Me.txtFactorSummary14.Value) = "" Then
 Me.txtFactorSummary14.Value = "No description
entered, yet."
 End If

 If Trim(Me.cbo3rdLevelCode14.Value) = "" Then
 MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"
 Else
 addFactor Me.cbo3rdLevelCode14.Value,
Me.txtFactorSummary14.Value
 Me.txtFactorSummary14.Value = "No description
entered, yet."
 MsgBox "Factor added to database.", vbOKOnly +
vbInformation, "Success"
 If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 End If

 Case 15
 If Trim(Me.txtFactorSummary15.Value) = "" Then
 Me.txtFactorSummary15.Value = "No description
entered, yet."
 End If

 If Trim(Me.cbo3rdLevelCode15.Value) = "" Then
 MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"

 349

 Else
 addFactor Me.cbo3rdLevelCode15.Value,
Me.txtFactorSummary15.Value
 Me.txtFactorSummary15.Value = "No description
entered, yet."
 MsgBox "Factor added to database.", vbOKOnly +
vbInformation, "Success"
 If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 End If

 Case 16
 If Trim(Me.txtFactorSummary16.Value) = "" Then
 Me.txtFactorSummary16.Value = "No description
entered, yet."
 End If

 If Trim(Me.cbo3rdLevelCode16.Value) = "" Then
 MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"
 Else
 addFactor Me.cbo3rdLevelCode16.Value,
Me.txtFactorSummary16.Value
 Me.txtFactorSummary16.Value = "No description
entered, yet."
 MsgBox "Factor added to database.", vbOKOnly +
vbInformation, "Success"
 If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 End If

 Case 17
 If Trim(Me.txtFactorSummary17.Value) = "" Then
 Me.txtFactorSummary17.Value = "No description
entered, yet."
 End If

 If Trim(Me.cbo3rdLevelCode17.Value) = "" Then
 MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"
 Else
 addFactor Me.cbo3rdLevelCode17.Value,
Me.txtFactorSummary17.Value
 Me.txtFactorSummary17.Value = "No description
entered, yet."
 MsgBox "Factor added to database.", vbOKOnly +
vbInformation, "Success"
 If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 End If

 Case 18
 askWhereToGo

 Case 19
 'Do nothing. Button is disabled

 End Select

End Sub

'===
'Function/Sub Name: businessLogicBackward()
'
'Description: Logic to determine what page to go in the
Reverse
'direction.
'
'Input:
' - pageCurrentlyAt - The page with the current focus.
'
'Output: None
'
'References: None
'
'===
Private Sub businessLogicBackward(pageCurrentlyAt As
Integer)

 Select Case pageCurrentlyAt

 Case 1
 'Do nothing. Back button is disabled

 Case 2
 iPageNumber = iPageNumber - 1
 DoCmd.GoToControl "Page" & iPageNumber
 Me.cmdCodeMaintenance.Visible = True
 Me.cmdBack.Enabled = False

 Case 3
 iPageNumber = iPageNumber - 1
 DoCmd.GoToControl "Page" & iPageNumber

 Case 4 To 7
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 Me.cmdBack.Enabled = False
 Me.cmdNext.Enabled = True

 Case 8 To 9
 iPageNumber = 4
 DoCmd.GoToControl "Page4"
 Me.cmdNext.Enabled = False

 Case 10 To 12
 iPageNumber = 5
 DoCmd.GoToControl "Page5"
 Me.cmdNext.Enabled = False

 Case 13 To 15
 iPageNumber = 6
 DoCmd.GoToControl "Page6"
 Me.cmdNext.Enabled = False

 Case 16 To 17
 iPageNumber = 7
 DoCmd.GoToControl "Page7"
 Me.cmdNext.Enabled = False

 Case 18
 If iFirstLevelCounter > 1 Then
 iFirstLevelCounter = iFirstLevelCounter - 1

 'Update the page 18 to reflect backwards
movement.
 Select Case iFirstLevelCounter

 Case 1 'managementCond

 350

 With Me.lblP18MgmtCond
 .ForeColor = QBColor(9)
 .FontWeight = 600
 .Caption = "Input MANAGMENT
CONDITIONS related factors."
 End With
 Me.chkP18MgmtCond.Value = False
 With Me.lblP18MaintCond
 .ForeColor = QBColor(0)
 .FontWeight = 400
 End With
 DoCmd.GoToControl "cmdNext"
 Me.cmdBack.Enabled = False

 Case 2 'maintainerCond
 With Me.lblP18MaintCond
 .ForeColor = QBColor(9)
 .FontWeight = 600
 .Caption = "Input MAINTAINER
CONDITIONS related factors."
 End With
 Me.chkP18MaintCond.Value = False
 With Me.lblP18WorkCond
 .ForeColor = QBColor(0)
 .FontWeight = 400
 End With

 Case 3 'workingCond
 With Me.lblP18WorkCond
 .ForeColor = QBColor(9)
 .FontWeight = 600
 .Caption = "Input WORKING
CONDITIONS related factors."
 End With
 Me.chkP18WorkCond.Value = False
 With Me.lblP18MaintActs
 .ForeColor = QBColor(0)
 .FontWeight = 400
 End With

 Case 4 'maintainerAct
 With Me.lblP18MaintActs
 .ForeColor = QBColor(9)
 .FontWeight = 600
 .Caption = "Input WORKING
CONDITIONS related factors."
 End With
 Me.chkP18MaintActs.Value = False

 End Select
 Else
 MsgBox "The Mishap has already been entered
into the database and cannot be edited from this wizard." & _
 Chr(13) & Chr(13) & "You can edit the mishap
data after you have finished entering factor data.",
vbOKOnly, _
 "Can't Edit Mishap"
 End If

 Case 19
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 Me.cmdFinish.Enabled = False

 End Select

End Sub

'===
'Function/Sub Name: askWhereToGo()
'
'Description: Logic to determine what page to go to based on
user
'input.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub askWhereToGo()

startSelect:

 Select Case iFirstLevelCounter

 Case 1 'managementCond
 If managementCond = True Then
 iPageNumber = 4
 DoCmd.GoToControl "Page4"
 Me.cmdNext.Enabled = False
 Me.cmdBack.Enabled = True
 Else
 iFirstLevelCounter = 2
 Me.cmdBack.Enabled = True
 With Me.lblP18MgmtCond
 .ForeColor = QBColor(8)
 .FontWeight = 400
 .Caption = "COMPLETED - Input
MANAGMENT CONDITIONS related factors."
 End With
 Me.chkP18MgmtCond.Value = True
 With Me.lblP18MaintCond
 .ForeColor = QBColor(9)
 .FontWeight = 600
 End With
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 'GoTo startSelect
 End If

 Case 2 'maintainerCond
 If maintainerCond = True Then
 iPageNumber = 5
 DoCmd.GoToControl "Page5"
 Me.cmdNext.Enabled = False
 Me.cmdBack.Enabled = True
 Else
 iFirstLevelCounter = 3
 With Me.lblP18MaintCond
 .ForeColor = QBColor(8)
 .FontWeight = 400
 .Caption = "COMPLETED - Input
MAINTAINER CONDITIONS related factors."
 End With
 Me.chkP18MaintCond.Value = True
 With Me.lblP18WorkCond
 .ForeColor = QBColor(9)
 .FontWeight = 600
 End With
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 'GoTo startSelect

 351

 End If

 Case 3 'workingCond
 If workingCond = True Then
 iPageNumber = 6
 DoCmd.GoToControl "Page6"
 Me.cmdNext.Enabled = False
 Me.cmdBack.Enabled = True
 Else
 iFirstLevelCounter = 4
 With Me.lblP18WorkCond
 .ForeColor = QBColor(8)
 .FontWeight = 400
 .Caption = "COMPLETED - Input WORKING
CONDITIONS related factors."
 End With
 Me.chkP18WorkCond.Value = True
 With Me.lblP18MaintActs
 .ForeColor = QBColor(9)
 .FontWeight = 600
 End With
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 'GoTo startSelect
 End If

 Case 4 'maintainerAct
 If maintainerAct = True Then
 iPageNumber = 7
 DoCmd.GoToControl "Page7"
 Me.cmdNext.Enabled = False
 Me.cmdBack.Enabled = True
 Else
 Me.chkP18MaintActs.Value = True
 iFirstLevelCounter = 5
 With Me.lblP18MaintActs
 .ForeColor = QBColor(8)
 .FontWeight = 400
 .Caption = "COMPLETED - Input WORKING
CONDITIONS related factors."
 End With
 iPageNumber = 18
 DoCmd.GoToControl "Page18"
 'GoTo startSelect
 End If

 Case 5 'Done
 'MsgBox "All factors should now be added. Click
next to continue.", vbOKOnly, "All Factors Added"
 iPageNumber = 19
 DoCmd.GoToControl "Page19"
 Me.cmdNext.Enabled = False
 Me.cmdFinish.Enabled = True

 End Select

End Sub

'===
'Function/Sub Name:
' - managementCond()
' - maintainerCond()
' - workingCond()
' - maintainerAct()
'

'Description: 4 Functions. For prompting users for type of
1st level
'factor to input.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Function managementCond() As Boolean

 Dim response As Variant

 response = MsgBox("Was there a Management Condition
that contributed to this mishap?" & Chr(13) & Chr(13) & _
 "Examples:" & Chr(13) & _
 " - An engine change is performed despite a high sea
state." & Chr(13) & _
 " - A manual omits a step calling for an o-ring to be
installed." & Chr(13) & _
 " - A commander does not ensure that personnel wear
required protective gear." & Chr(13) & _
 " - A technical publication does not specify torque
requirements." & Chr(13) & _
 " - A poor component layout prohibits direct viewing
during inspection." & Chr(13) & Chr(13) & _
 "Click yes to enter a factor. No to go to the next
category.", vbYesNo + vbQuestion + vbDefaultButton1,
"First Level Factors")

 If response = vbYes Then
 managementCond = True
 Else
 managementCond = False
 End If

End Function
Private Function maintainerCond() As Boolean

 Dim response As Variant

 response = MsgBox("Was there a Maintainer Condition
that contributed to this mishap?" & Chr(13) & Chr(13) & _
 "Examples:" & Chr(13) & _
 " - A maintainer with life stress has impaired
concentration." & Chr(13) & _
 " - A maintainer is fatigued from working 20 hours
straight." & Chr(13) & _
 " - A short maintainer cannot visually inspect an
aircraft component." & Chr(13) & _
 " - A maintainer using improper hand signals." &
Chr(13) & _
 " - A maintainer signs off an inspections due to
perceived pressure." & Chr(13) & _
 " - A maintainer working on an aircraft skipped a
requisite training evolution." & Chr(13) & Chr(13) & _
 "Click yes to enter a factor. No to go to the next
category.", vbYesNo + vbQuestion + vbDefaultButton1,
"First Level Factors")

 If response = vbYes Then
 maintainerCond = True
 Else
 maintainerCond = False
 End If

 352

End Function
Private Function workingCond() As Boolean

 Dim response As Variant

 response = MsgBox("Was there a Working Condition that
contributed to this mishap?" & Chr(13) & Chr(13) & _
 "Examples:" & Chr(13) & _
 " - A maintainer working at night without artificial
lighting." & Chr(13) & _
 " - A maintainer securing an aircraft in a driving rain
improperly chocks a wheel" & Chr(13) & _
 " working at night without artificial lighting." &
Chr(13) & _
 " - A maintainer slips on a pitching deck." & Chr(13)
& _
 " - A maintainer uses faulty test set." & Chr(13) & _
 " - A maintainer in a fuel cell cannot reach a
component." & Chr(13) & _
 " - A maintainer's view in spotting an aircraft is
obscured by catapult steam." & Chr(13) & Chr(13) & _
 "Click yes to enter a factor. No to go to the next
category.", vbYesNo + vbQuestion + vbDefaultButton1,
"First Level Factors")

 If response = vbYes Then
 workingCond = True
 Else
 workingCond = False
 End If

End Function
Private Function maintainerAct() As Boolean

 Dim response As Variant

 response = MsgBox("Was there a Maintainer Act that
contributed to this mishap?" & Chr(13) & Chr(13) & _
 "Examples:" & Chr(13) & _
 " - A maintainer misses a hand signal." & Chr(13) & _
 " - A maintainer inflates a tire using a pressure required
by a different aircraft." & Chr(13) & _
 " - A maintainer misjudges the distance between a tow
tractor an aircraft wing." & Chr(13) & _
 " - A maintainer engages in practices, condoned by
management, that bend the rules." & Chr(13) & _
 " - A maintainer willfully breaks standing rules
disregarding the consequences." & Chr(13) & Chr(13) & _
 "Click yes to enter a factor. No to Finish.", vbYesNo +
vbQuestion + vbDefaultButton1, "First Level Factors")

 If response = vbYes Then
 maintainerAct = True
 Else
 maintainerAct = False
 End If

End Function

'===
'Function/Sub Name: addFactor()
'
'Description: Creates a new default factor.
'
'Input:
' - s3rdLevelFactor - Type of factor to create.
' - sShortDescription - Short description for the factor.

'
'Output: None
'
'References: None
'
'===
Private Function addFactor(s3rdLevelFactor As String,
sShortDescription As String) As Boolean

 iFactorsAddedCounter = iFactorsAddedCounter + 1
 Me.txtFactorCounter.Value = iFactorsAddedCounter

 'On Error GoTo StartError

 DoCmd.SetWarnings (False)
 DoCmd.RunSQL "INSERT INTO tblMishapFactors
(MishapID_FK, FactorSummary, 3rdLevelCode_FK)
VALUES ('" & GlobalDeclarat ions.gLngMishapToGet & "',
'" & sShortDescription & "', '" & s3rdLevelFactor & "');"
 DoCmd.SetWarnings (True)

 addFactor = True

ExitSub:

 Exit Function

StartError:
 addFactor = False
 GoTo ExitSub

End Function

'===
'Function/Sub Name: cmdCancel_Click()
'
'Description: Closes the form undoing changes.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdCancel_Click()
 On Error GoTo Err_cmdCancel_Click

 GlobalDeclarations.gFormNeedsRefresh = True
 bBackToMain = True 'Have to use a flag to differentiate a
cancel from a finish
 DoCmd.Close acForm, "1-0-0-5-frm-addMishap"

Exit_cmdCancel_Click:
 Exit Sub

Err_cmdCancel_Click:
 MsgBox ERR.Description
 Resume Exit_cmdCancel_Click

End Sub

'===
'Function/Sub Name: addMishap()
'
'Description: Creates a new default Mishap.

 353

'
'Input: None.
'
'Output: None
'
'References: None
'
'===
Private Function addMishap() As Boolean

 On Error GoTo StartError

 DoCmd.SetWarnings (False)
 DoCmd.RunSQL "INSERT INTO tblMishaps
(MishapDate, Aircraft_FK, Class_FK, Type_FK,
LocationID_FK," & _
 "OrgID_FK, ShortDescription, LongDescription,
DatabaseType) VALUES ('" & _
 Me.txtDate.Value & "', '" & _
 Me.cboAircraftType.Value & "', '" & _
 Me.cboClass.Value & "', '" & _
 Me.cboType.Value & "', '" & _
 Me.cboLocation.Value & "', '" & _
 Me.cboOrganization.Value & "', '" & _
 Me.txtShortDescription.Value & "', '" & _
 Me.txtLongDescription.Value & "', '" & _
 Me.txtDatabaseType.Value & "');"
 DoCmd.SetWarnings (T rue)

 'Now determine the MishapID that was just created by
getting the max value
 Dim conn As New ADODB.Connection
 Dim rst As New ADODB.Recordset
 Dim sTempHolder As String

 'Open a connection to the data
 Set conn = Application.CurrentProject.Connection

 'Open a recordset with a keyset cursor
 rst.Open "SELECT max(MishapID) FROM tblMishaps",
conn, adOpenDynamic, adLockOptimistic, adCmdText

 rst.MoveFirst
 'MsgBox rst.Fields(0)
 Me.TxtGlobalFocus.Value = rst.Fields(0)

 'Clean up
 rst.Close

 conn.Close

 addMishap = True

ExitSub:

 Exit Function

StartError:
 addMishap = False
 GoTo ExitSub

End Function

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'
'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm
 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 354

FORMCLASS-1-0-0-7-PopUpFrm-CodeMaintenance

Option Compare Database
Option Explicit
'###
' FORM DESCRIPTION
'###
'Class Name: 1-0-0-7-PopUpFrm-CodeMaintenance
'
'Author: Pat Flanders & Scott Tufts
'
'Allows an Administrator to add codes directly to the datbase
code
'lookup tables.
'
'References:
' - tblAircraft
' - tblMishapClass
' - tblMishapLocation
' - tblOrganization
' - tblmishaptype
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: cmdClose_Click()
'
'Description: Closes the form.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdClose_Click()
 DoCmd.Close acForm, "1-0-0-7-PopUpFrm-
CodeMaintenance"
End Sub

'===
'Function/Sub Name: cmdOK_Click()
'
'Description: Opens the appropriate table for direct editing
based
'on the radio button selection in the frame.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Private Sub cmdOk_Click()

 If Me.Frame6 = 1 Then

 DoCmd.OpenForm "1-0-0-7-PopUpFrm-CodeMaint-
tblAircraft", acFormDS
 End If

 If Me.Frame6 = 2 Then
 DoCmd.OpenForm "1-0-0-7-PopUpFrm-CodeMaint-
tblMishapClass", acFormDS
 End If

 If Me.Frame6 = 3 Then
 DoCmd.OpenForm "1-0-0-7-PopUpFrm-CodeMaint-
tblMishapLocation", acNormal
 End If

 If Me.Frame6 = 4 Then
 DoCmd.OpenForm "1-0-0-7-PopUpFrm-CodeMaint-
tblOrganization", acNormal
 End If

 If Me.Frame6 = 5 Then
 DoCmd.OpenForm "1-0-0-7-PopUpFrm-CodeMaint-
tblMishapType", acFormDS
 End If

End Sub

'===
'Function/Sub Name: Form_Load()
'
'Description: Dynamically resizes the form to the users
screen
'resolution and then centers it.
'
'Input: None
'
'Output: None
'
'References:
' - ezSizeForm
'
'===
Private Sub Form_Load()
 ezSizeForm Me, -1
 MoveToCenter "1-0-0-7-PopUpFrm-CodeMaintenance"
End Sub

'===
'Function/Sub Name: MoveToCenter()
'
'Description: Centers the form on the screen. Using the
ezSizeForm
'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form gets its own version of
this
'function so that minor adjustments can be made on a form by
form
'basis.
'
'Input: None
'
'Output: None
'

 355

'References:
' - clFormWindow
'
'===
Public Sub MoveToCenter(ByVal strFormName As String)

 Dim fwForm As New clFormWindow

 With fwForm

 .hwnd = Forms(strFormName).hwnd
 '.Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
 .Left = (.Parent.Width - .Width) / 2
 End With
 Set fwForm = Nothing

End Sub

 356

MODULE-DetermineOSDeclares

Option Explicit

Type OSVERSIONINFO
dwOSVersionInfoSize As Long
dwMajorVersion As Long
dwMinorVersion As Long
dwBuildNumber As Long
dwPlatformId As Long
szCSDVersion As String * 128 ' Maintenance string for PSS
usage
End Type
Declare Function GetVersionEx Lib "kernel32" Alias
"GetVersionExA" (lpVersionInformation As
OSVERSIONINFO) As Long
Declare Function GetSystemMetrics Lib "user32" (ByVal
nIndex As Long) As Long
Public Const SM_CLEANBOOT = 67
Public Const SM_DEBUG = 22
Public Const SM_SLOWMACHINE = 73
Public Const VER_PLATFORM_WIN32s = 0
Public Const VER_PLATFORM_WIN32_WINDOWS = 1
Public Const VER_PLATFORM_WIN32_NT = 2

'###
' MODULE DESCRIPTION
'###
'Class Name: DetermineOSDeclares.bas
'
'Author: Pat Flanders & Scott Tufts
'
'Description: Contains various functions for determining
system
'properties like O/S type and version of Access that is
running.
'
'The O/S type functions are declared above and result in
direct
'querying of the Windows API.
'
'References: None
'
'###

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: IsRuntime()
'
'Description: Determines if Access runtime is being used to
run the
'application. Access runtime has no support for reports.
'
'Input: None
'
'Output: Success or failure.

'
'References: None
'
'===
Function IsRuntime() As Boolean

 ' Check if this application is using the run-time version of
Access.
 IsRuntime = SysCmd(acSysCmdRuntime)

End Function

'===
'Function/Sub Name: IsRunning()
'
'Description: To prevent a second instance from loading if a
user mistakenly
'attempts to launch it twice. This code is called from the
autoexec
'macro to test whether the app is already running and
terminate
'the launch if a copy of it is already open.
'
'Input: None
'
'Output: -1 means that an instance is already running.
'
'References: None
'
'===
Function IsRunning() As Integer
 If TestDDELink(Application.CurrentProject.Name) Then
 'A -1 means that this is a second instance.
 IsRunning = -1
 Else
 IsRunning = 0
 End If
End Function

' Helper Function for IsRunning() above
Function TestDDELink(ByVal strAppName$) As Integer

 Dim varDDEChannel As Variant
 On Error Resume Next
 Application.SetOption ("Ignore DDE Requests"), True
 varDDEChannel = DDEInitiate("MSAccess",
strAppName)

 ' When the app isn't already running this will error
 If ERR Then
 TestDDELink = False
 Else
 TestDDELink = True
 DDETerminate varDDEChannel
 DDETerminateAll
 End If
 Application.SetOption ("Ignore DDE Requests"), False

End Function

 357

MODULE-ezSizingFunctions

Option Compare Database
Option Explicit
'###
' MODULE DESCRIPTION
'###
'Class Name: ezSizingFunctions.bas
'
'Author: EZ Sizing Functions
' Copyright (C) 2000 Database Creations, Inc.
' Revision 6/14/00
' based on 8/25/99 code with revisionss
'
'Description: Contains various functions for dynamically
resizing
'the forms in the application based on the user's screen
resolution.
'
'
'References: None
'
'###

'***
' FUNCTIONS
'***
'Functions are defined below by the author and are Copyright
of
'Database Creations, Inc.

Type RECT
 x1 As Long
 y1 As Long
 x2 As Long
 y2 As Long
End Type

Type TEXTMETRIC
 tmHeight As Integer
 tmAscent As Integer
 tmDescent As Integer
 tmInternalLeading As Integer
 tmExternalLeading As Integer
 tmAveCharWidth As Integer
 tmMaxCharWidth As Integer
 tmWeight As Integer
 tmItalic As String * 1
 tmUnderlined As String * 1
 tmStruckOut As String * 1
 tmFirstChar As String * 1
 tmLastChar As String * 1
 tmDefaultChar As String * 1
 tmBreakChar As String * 1
 tmPitchAndFamily As String * 1
 tmCharSet As String * 1
 tmOverhang As Integer
 tmDigitizedAspectX As Integer
 tmDigitizedAspectY As Integer
End Type

Declare Function IsZoomed Lib "user32" (ByVal hwnd As
Long) As Long
Declare Function IsIconic Lib "user32" (ByVal hwnd As
Long) As Long

Declare Function GetDesktopWindow Lib "user32" () As
Long
Declare Function GetWindowRect Lib "user32" (ByVal
hwnd As Long, rectangle As RECT) As Long
Declare Function GetTextMetrics Lib "gdi32" Alias
"GetTextMetricsA" (ByVal hdc As Long, lpMetrics As
TEXTMETRIC) As Long
Declare Function GetWindowDC Lib "user32" (ByVal hwnd
As Long) As Long
Declare Function ReleaseDC Lib "user32" (ByVal hwnd As
Long, ByVal hdc As Long) As Long
Declare Function SetMapMode Lib "gdi32" (ByVal hdc As
Long, ByVal nMapMode As Long) As Long

Public Sub ezSizeForm(xForm As Form, ScaleFactor As
Single, Optional EchoOff As Boolean = True)
'This subroutine will resize the form specified by parameter
xForm by the factor of ScaleFactor
'If scale factor is 0 or negative, automatic scaling will occur
based on the following
' Value Forms originally designed for
' 0 640 x 480
' -1 800 x 600
' -2 1024 x 768
' -3 1280 x 1024
' -4 1600 x 1200
' -5 1152 x 864 OR 1152 x 870

Dim ActiveForm As Object
Dim i As Integer
Dim D(200, 3) As Single

 On Error GoTo errorHandler
 If ScaleFactor = 1 Then GoTo Done
 If ScaleFactor <= 0 Then ScaleFactor =
ezGetScaleFactor(ScaleFactor)

 If EchoOff Then DoCmd.Echo False
 Set ActiveForm = xForm

 'If form in datasheet view then don't resize
 If xForm.CurrentView <> 1 Then GoTo Done

 'If the form is maximized then don't resize
 If IsZoomed(xForm.hwnd) <> 0 Then GoTo Done

 With ActiveForm
 If ScaleFactor > 1 Then 'form is growing
 'deal with section heights and form width first
 On Error Resume Next 'handle error for non-existent
sections
 For i = 0 To 4
 .Section(i).Height = .Section(i).Height *
ScaleFactor
 Next i
 On Error GoTo errorHandler
 .Width = .Width * ScaleFactor
 End If

 'save old dimensions of subforms/groups/tabs
 For i = 0 To .Count - 1
 Select Case .Controls(i).ControlType
 Case acOptionGroup, acSubform, acTabCtl
 D(i, 0) = .Controls(i).Width
 D(i, 1) = .Controls(i).Height

 358

 D(i, 2) = .Controls(i).Left
 D(i, 3) = .Controls(i).Top
 End Select
 Next i

 'deal with controls
 For i = 0 To .Count - 1
 Select Case .Controls(i).ControlType
 Case acOptio nGroup, acPage
 'do nothing now
 Case acTabCtl
 .Controls(i).TabFixedWidth =
.Controls(i).TabFixedWidth * ScaleFactor
 .Controls(i).TabFixedHeight =
.Controls(i).TabFixedHeight * ScaleFactor
 If .Controls(i).Left < 0 Then .Controls(i).Left = 0
 .Controls(i).Left = .Controls(i).Left * ScaleFactor
 .Controls(i).Top = .Controls(i).Top * ScaleFactor
 .Controls(i).Width = .Controls(i).Width *
ScaleFactor
 .Controls(i).Height = .Controls(i).Height *
ScaleFactor
 .Controls(i).fontsize = .Controls(i).fontsize *
ScaleFactor
 Case acSubform
 On Error Resume Next
 ezSizeForm .Controls(i).Form, ScaleFactor,
False
 On Error GoTo errorHandler
 Case Else
 On Error Resume Next
 If .Controls(i).Left < 0 Then .Controls(i).Left = 0
 .Controls(i).Left = .Controls(i).Left *
ScaleFactor
 .Controls(i).Top = .Controls(i).Top *
ScaleFactor
 .Controls(i).Width = .Controls(i).Width *
ScaleFactor
 .Controls(i).Height = .Controls(i).Height *
ScaleFactor
 .Controls(i).fontsize = .Controls(i).fontsize *
ScaleFactor
 On Error GoTo errorHandler
 End Select
 Next i

 'fix dimensions of subforms/groups/tabs
 If ScaleFactor > 1 Then
 On Error Resume Next
 For i = 0 To 4
 .Section(i).Height = .Section(i).Height * ScaleFactor
 Next i
 On Error GoTo errorHandler
 End If
 For i = 0 To .Count - 1
 Select Case .Controls(i).ControlType
 Case acSubform
 .Controls(i).Width = D(i, 0) * ScaleFactor
 .Controls(i).Height = D(i, 1) * ScaleFactor
 .Controls(i).Left = D(i, 2) * ScaleFactor
 .Controls(i).Top = D(i, 3) * ScaleFactor
 End Select
 Next i
 For i = 0 To .Count - 1
 Select Case .Controls(i).ControlType
 Case acOptionGroup, acTabCtl
 .Controls(i).Left = D(i, 2) * ScaleFactor
 .Controls(i).Top = D(i, 3) * ScaleFactor

 .Controls(i).Width = D(i, 0) * ScaleFactor
 .Controls(i).Height = D(i, 1) * ScaleFactor
 End Select
 Next i

 'Resize form dimensions and fit window to form
 On Error Resume Next
 For i = 0 To 4
 .Section(i).Height = 0
 Next i
 On Error GoTo errorHandler
 .Width = 0
 DoCmd.RunCommand acCmdSizeToFitForm
 GoTo Done

errorHandler:
 If ERR.Number = 2046 Then GoTo Done
 MsgBox "Error with control " & .Controls(i).Name &
vbCrLf & _
 "L: " & .Controls(i).Left & " - " & D(i, 2) & vbCrLf &
_
 "T: " & .Controls(i).Top & " - " & D(i, 3) & vbCrLf &
_
 "W: " & .Controls(i).Width & " - " & D(i, 0) &
vbCrLf & _
 "H: " & .Controls(i).Height & " - " & D(i, 1) &
vbCrLf

Done:
 If EchoOff Then DoCmd.Echo True
 End With

End Sub

Function ezGetScreenRes() As String
'This function returns the windows screen size
Dim R As RECT
Dim hwnd As Long
Dim RetVal As Long

 hwnd = GetDesktopWindow()
 RetVal = GetWindowRect(hwnd, R)
 ezGetScreenRes = (R.x2 - R.x1) & "x" & (R.y2 - R.y1)

End Function

Public Function ezGetScaleFactor(S) As Single
'Returns a scale factor for resizing based on the passed
parameter S
' which should represent the screen size a form was designed
for
' the scale factor returned is based on the current screen
resolution
 Select Case S
 Case 0 '640 x 480
 Select Case ezGetScreenRes
 Case "640x480"
 ezGetScaleFactor = 1
 Case "800x600"
 ezGetScaleFactor = 1.2
 Case "1024x768"
 ezGetScaleFactor = 1.5
 Case "1152x864", "1152x870"
 ezGetScaleFactor = 1.7
 Case "1280x1024"
 ezGetScaleFactor = 1.9
 Case "1600x1200"
 ezGetScaleFactor = 2.4

 359

 End Select
 Case -1 '800 x 600
 Select Case ezGetScreenRes
 Case "640x480"
 ezGetScaleFactor = 0.8
 Case "800x600"
 ezGetScaleFactor = 1
 Case "1024x768"
 ezGetScaleFactor = 1.2
 Case "1152x864", "1152x870"
 ezGetScaleFactor = 1.4
 Case "1280x1024"
 ezGetScaleFactor = 1.5
 Case "1600x1200"
 ezGetScaleFactor = 1.9
 End Select
 Case -2 '1024 x 768
 Select Case ezGetScreenRes
 Case "640x480"
 ezGetScaleFactor = 0.6
 Case "800x600"
 ezGetScaleFactor = 0.7
 Case "1024x768"
 ezGetScaleFactor = 1
 Case "1152x864", "1152x870"
 ezGetScaleFactor = 1.05
 Case "1280x1024"
 ezGetScaleFactor = 1.1
 Case "1600x1200"
 ezGetScaleFactor = 1.4
 End Select
 Case -3 '1280 x 1024
 Select Case ezGetScreenRes
 Case "640x480"
 ezGetScaleFactor = 0.5
 Case "800x600"
 ezGetScaleFactor = 0.6
 Case "1024x768"
 ezGetScaleFactor = 0.8
 Case "1152x864", "1152x870"
 ezGetScaleFactor = 0.9
 Case "1280x1024"
 ezGetScaleFactor = 1
 Case "1600x1200"
 ezGetScaleFactor = 1.1
 End Select
 Case -4 '1600 x 1200
 Select Case ezGetScreenRes
 Case "640x480"
 ezGetScaleFactor = 0.3
 Case "800x600"
 ezGetScaleFactor = 0.4
 Case "1024x768"
 ezGetScaleFactor = 0.6
 Case "1152x864", "1152x870"
 ezGetScaleFactor = 0.65
 Case "1280x1024"
 ezGetScaleFactor = 0.7
 Case "1600x1200"
 ezGetScaleFactor = 1
 End Select
 Case -5 '1152 x 864 OR 1152 x 870
 Select Case ezGetScreenRes
 Case "640x480"
 ezGetScaleFactor = 0.4
 Case "800x600"
 ezGetScaleFactor = 0.6
 Case "1024x768"

 ezGetScaleFactor = 0.8
 Case "1152x864", "1152x870"
 ezGetScaleFactor = 1
 Case "1280x1024"
 ezGetScaleFactor = 1.1
 Case "1600x1200"
 ezGetScaleFactor = 1.4
 End Select
 End Select
 If ezLargeFonts Then ezGetScaleFactor =
ezGetScaleFactor / 1.25
End Function
Public Function ezReSize(xForm As Form)
'This subroutine will resize the form based on it's current
dimensions
Dim ActiveForm As Object
Dim strTag As String
Dim SH As Single
Dim SW As Single

 On Error GoTo errorHandler
 Set ActiveForm = xForm

 'If form in datasheet view then don't resize
 If xForm.CurrentView <> 1 Then GoTo Done

 'If the form is maximized then don't resize
 If IsZoomed(xForm.hwnd) <> 0 Then GoTo Done

 'If the form is minimized then don't resize
 If IsIconic(xForm.hwnd) <> 0 Then GoTo Done

 With ActiveForm
 If .tag = "Sizing" Then GoTo Done
 strTag = .tag
 .tag = "Sizing"
 'Determine size of window and set resize based on
lowest proportion
 SH = .WindowHeight / .Section(0).Height
 SW = .WindowWidth / .Width
 If SH > SW Then
 ezSizeForm xForm, SW
 Else
 ezSizeForm xForm, SH
 End If
 .Width = 0
 On Error Resume Next
 .tag = strTag
 End With
 GoTo Done
errorHandler:
 MsgBox ERR.Description
Done:

End Function

Public Function ezLargeFonts() As Boolean
'This function returns a true if large fonts are being used.
Dim hdc As Long
Dim hwnd As Long
Dim PrevMapMode As Long
Dim tm As TEXTMETRIC

 'Get the handle of the desktop window
 hwnd = GetDesktopWindow()
 'Get the device context for the desktop
 hdc = GetWindowDC(hwnd)
 If hdc Then 'Set the mapping mode to pixels

 360

 PrevMapMode = SetMapMode(hdc, 1)
 'Get the size of the system font
 GetTextMetrics hdc, tm
 'Set the mapping mode back to what it was
 PrevMapMode = SetMapMode(hdc, PrevMapMode)
 'Release the device context
 ReleaseDC hwnd, hdc

 'If the system font is more than 16 pixels high, then
large fonts are being used
 If tm.tmHeight > 16 Then ezLargeFonts = True Else
ezLargeFonts = False
 End If

End Function

 361

MODULE-GlobalDeclarations

Option Compare Database
Option Explicit
'###
' MODULE DESCRIPTION
'###
'Class Name: GlobalDeclarations.bas
'
'Author: Pat Flanders & Scott Tufts
'
'Description: Contains all definitions for application global
'variables. Most of these are needed due to the inability of
'VBA to pass parameters as part of a constructor.
'
'References: None
'
'###

Global gLngMishapToGet As Long
Global gFormNeedsRefresh As Boolean
Global gBlnAddAMishap As Boolean
Global gStrDescription As String
Global gstrDatabaseType As String

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: getDBType()
'
'Description: Determines the type of database (military or
civilian)
'based on the SQL serverer tblDatabaseType settings.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Public Sub getDBType()

 Dim conn As New ADODB.Connection
 Dim rst As New ADODB.Recordset
 Dim sTempHolder As String

 'Open a connection to the data
 Set conn = Application.CurrentProject.Connection

 'Open a recordset with a keyset cursor
 rst.Open "SELECT * FROM tblDatabaseType", conn,
adOpenDynamic, adLockOptimistic, adCmdText

 'Walk the recordset
 Do Until rst.EOF
 If rst.Fields(0) = "M" Then sTempHolder = "M"
 rst.MoveNext
 Loop

 If sTempHolder = "M" Then

 GlobalDeclarations.gstrDatabaseType = "M"
 Else
 GlobalDeclarations.gstrDatabaseType = "C"
 End If

 'Clean up
 rst.Close
 conn.Close

End Sub

'===
'Function/Sub Name: toggleDBType()
'
'Description: Toggles the current investigation module DB
type.
'
'Input: None
'
'Output: Success or failure.
'
'References: None
'
'===
Public Function toggleDBType() As Boolean

 On Error GoTo StartError
 GlobalDeclarations.getDBType

 DoCmd.SetWarnings (False)

 If GlobalDeclarations.gstrDatabaseType = "M" Then
 DoCmd.RunSQL "UPDATE tblDatabaseType SET
tblDatabaseType.DatabaseType = " & Chr(34) & "C" &
Chr(34) & " WHERE tblDatabaseType.DatabaseType=" &
Chr(34) & "M" & Chr(34) & ";"
 GlobalDeclarations.gstrDatabaseType = "C"
 Else
 DoCmd.RunSQL "UPDATE tblDatabaseType SET
tblDatabaseType.DatabaseType = " & Chr(34) & "M" &
Chr(34) & " WHERE tblDatabaseType.DatabaseType=" &
Chr(34) & "C" & Chr(34) & ";"
 GlobalDeclarations.gstrDatabaseType = "M"
 End If
 DoCmd.SetWarnings (True)

 Forms![1-0-0-0-frm-SelectMishap].Refresh

 toggleDBType = True

ExitSub:

 Exit Function

StartError:
 toggleDBType = False
 GoTo ExitSub

End Function

'===
'Function/Sub Name: getDBTypeFromFile()
'

 362

'Description: Determinese the type of database (military or
civilian)
'based on the HFACS.ini file settings.
'
'Input: None
'
'Output: Success or failure.
'
'References: None
'
'===
Public Function getDBTypeFromFile() As Boolean

 Dim sFileName As String
 Dim oINIFile As INIFile
 Set oINIFile = New INIFile
 oINIFile.Init ("HFACS")

 On Error GoTo StartError
 Screen.MousePointer = 11
 Debug.Print "Reading ini data . . ."

 ' Get name for .ini file in the SYSTEM directory
 sFileName = oINIFile.GetIniFileName

 Debug.Print sFileName

 ' Read values from .ini file. Specify file name, section, and
key.
 GlobalDeclarations.gstrDatabaseType =
oINIFile.ReadFromIniFile(sFileName, _
 "DBTYPE", "DBtype")
 Debug.Print "Just read in " &
GlobalDeclarations.gstrDatabaseType

 Screen.MousePointer = 0
 If Trim(GlobalDeclarations.gstrDatabaseType) = "" Then
 getDBTypeFromFile = False
 Else
 getDBTypeFromFile = True
 End If

ExitSub:
 Set oINIFile = Nothing
 Exit Function

StartError:
 Screen.MousePointer = 0
 getDBTypeFromFile = False
 Resume ExitSub

End Function

'===
'Function/Sub Name: synchFileDBTypeToDbValue()
'
'Description: Ensures that this program opens in the same
mode (civilian
'or military) as the HFACS instance that launched it.
'
'Input: None
'
'Output: None
'
'References: None
'
'===
Public Sub synchFileDBTypeToDbValue()

 Dim sTempNameHolder As String
 If GlobalDeclarations.getDBTypeFromFile = True Then
 sTempNameHolder =
GlobalDeclarations.gstrDatabaseType
 GlobalDeclarations.getDBType
 If Trim(sTempNameHolder) <>
GlobalDeclarations.gstrDatabaseType Then
GlobalDeclarations.toggleDBType
 'Else
 'MsgBox "No ini file to read."
 End If

ExitSub:
 Exit Sub

StartError:
 GoTo ExitSub

End Sub

 363

APPENDIX L. MODIFIED VB SETUP1

CLASS-INIFile

Option Explicit

'###
' CLASS DESCRIPTION
'###
'Class Name: INIFile.cls
'
'Author: Microsoft Corporation. Modified by Pat Flanders
&
' Scott Tufts
'
'This class creates .ini File objects used to create, delete, set,
'and get values in a standard format Microsoft .ini file. It
uses
'calls to the Windows API for efficiency.
'
'References: Windows API
'
'NOTE: See function headers for internal component
references.
'###

'***
' PROPERTIES
'***

'The name of the ini file to read
'##ModelId=3B294CFD03A9
Private msWbkName As String

'API Wrapper Code - provided by Microsoft
'##ModelId=3B294CFE0000
Private Declare Function WritePrivateProfileString Lib
"kernel32" Alias "WritePrivateProfileStringA" (ByVal
lpApplicationName As String, ByVal lpKeyName As String,
ByVal lpString As String, ByVal lpFileName As String) As
Long

'##ModelId=3B294CFE00AB
Private Declare Function GetPrivateProfileString Lib
"kernel32" Alias "GetPrivateProfileStringA" (ByVal
lpApplicationName As String, ByVal lpKeyName As Any,
ByVal lpDefault As String, ByVal lpReturnedString As
String, ByVal nSize As Long, ByVal lpFileName As String)
As Long

'##ModelId=3B294CFE0196
Private Declare Function GetWindowsDirectory Lib
"kernel32" Alias "GetWindowsDirectoryA" (ByVal lpBuffer
As String, ByVal nSize As Long) As Long

'***
' FUNCTIONS
'***

'===
'Function/Sub Name: Init()
'
'Description: If an instance of a class is created using the
psuedo-
'constructors from the Constructors.bas module, this function
is
'called to pass initial values, thereby mimicking the bahavior
of
'a constructor with arguments. Passed in values are all
required, but
'the Constructors.New_INIFile() function automatically sets
'passed-in values to global variable values if they are left
'blank.
'
'Input:
' sPassedInWorkBookName - Name of the .ini file to
manipulate
'
'Output: None
'
'References:
' - Constructors.bas
'===
'##ModelId=3B294CFE0213
Friend Sub Init(sPassedInWorkBookName As String)

 msWbkName = sPassedInWorkBookName

End Sub

'===
'Function/Sub Name: WriteToIniFile()
'
'Description: Write a section, key, and value to an .ini file.
'
'Input:
' strSection - Name of a section
' strKey - Name of a key
' strValue - Name of a key value
' strFileName - Name of the file to manipulate
'
'Output: Success or failure
'
'References: None
'===
'##ModelId=3B294CFE0251
Friend Function WriteToIniFile(strSection As String, strKey
As String, strValue As String, strFileName As String) As
Boolean

 ' Pass in name of section, key, key value, and file name.
 If WritePrivateProfileString(strSection, strKey, _
 strValue, strFileName) Then
 WriteToIniFile = True
 Else
 MsgBox "Error writing to .ini file: " & Err.LastDllError
 WriteToIniFile = False
 End If

 364

End Function

'===
'Function/Sub Name: DeleteIniSection()
'
'Description: Delete a section and all of its keys from an .ini
file.
'
'Input:
' strSection - Name of a section
' strFileName - Name of the file to manipulate
'
'Output: Success or failure
'
'References: None
'===
'##ModelId=3B294CFE02DE
Friend Function DeleteIniSection(strSection As String,
strFileName As String) As Boolean

 If WritePrivateProfileString(strSection, vbNullString, _
 vbNullString, strFileName) Then
 DeleteIniSection = True
 Else
 MsgBox "Error deleting section from .ini file: " _
 & Err.LastDllError
 DeleteIniSection = False
 End If

End Function

'===
'Function/Sub Name: DeleteIniKey()
'
'Description: Delete a key and its value from an .ini file.
'
'Input:
' strSection - Name of a section
' strKey - Name of a key
' strFileName - Name of the file to manipulate
'
'Output: Success or failure
'
'References: None
'===
'##ModelId=3B294CFE033C
Friend Function DeleteIniKey(strSection As String, strKey
As String, strFileName As String) As Boolean

 If WritePrivateProfileString(strSection, strKey, _
 vbNullString, strFileName) Then
 DeleteIniKey = True
 Else
 MsgBox "Error deleting section from .ini file: " _
 & Err.LastDllError
 DeleteIniKey = False
 End If

End Function

'===
'Function/Sub Name: GetIniFileName()
'

'Description: Return name for .ini file. Name includes name
of
'workbook file and ".ini". File path can be made the Windows
directory.
'by uncommenting the code below
'
'Input: None
'
'Output: String path (e.g. C:\windows\HFACS.ini).
'
'References: None
'===
'##ModelId=3B294CFE03A9
Friend Function GetIniFileName() As String

 Dim strWinDir As String
 Dim lngLen As Long

 ' Create null-terminated string to pass to
 ' GetWindowsDirectory.
' strWinDir = String$(255, vbNullChar)

' lngLen = Len(strWinDir)

 ' Return Windows directory.
' GetWindowsDirectory strWinDir, lngLen

 ' Truncate before first null character.
 ' strWinDir = Left(strWinDir, _
' InStr(strWinDir, vbNullChar) - 1)

 ' Return .ini file name.
 ' GetIniFileName = strWinDir & "\" & msWbkName &
".ini"

 GetIniFileName = App.Path & "\" & msWbkName & ".ini"

End Function

'===
'Function/Sub Name: ReadFromIniFile()
'
'Description: Read a value from an .ini file, given the file
name,
'section, key, and default value to return if key is not foun d.
'
'Input:
' strSection - Name of a section
' strKey - Name of a key
' strDefault - Default name of a key value
' strFileName - Name of the file to manipulate
'
'Output: Success or failure
'
'References: None
'===
'##ModelId=3B294CFE03D8
Friend Function ReadFromIniFile(strFileName As String,
strSection As String, strKey As String, Optional strDefault
As String = "") As String

 Dim strValue As String

 ' Fill string buffer with null characters.
 strValue = String$(255, vbNullChar)

 ' Attempt to read value. GetPrivateProfileString

 365

 ' function returns number of characters written
 ' into string.
 If GetPrivateProfileString(strSection, strKey, _
 strDefault, strValue, Len(strValue), _
 strFileName) > 0 Then
 ' If characters have been written into string, parse string
 ' and return.
 strValue = Left(strValue, InStr(strValue, vbNullChar) -
1)

 ReadFromIniFile = strValue
 Else
 ' Otherwise, return a zero-length string.
 ReadFromIniFile = strDefault
 End If

End Function

 366

SETUP 1 Modification Code

The Package & Deployment Wizard “Setup1.exe” program
requires modification for use with the HFACS program.
There are two areas that are modified:

1) Code for updating the HFACS.ini file
with the location that the user installs HFACs.
This is how HFACS knows where to look for its
components.

2) Code for adding the HFACS Icon
(rather than the MS Access Icon) to the START
menu bar in Windows. This provides a more
professional appearance.

The following section outlines the modifications needed for
item 1above. Item 2 instructions can be found in Microsoft
Knowledgebase article Q240965.

MAKE THE FOLLOWING CHANGES TO THE
STANDARD SETUP1.VBP:

Step1 - Modifications to basSetup1

'Added by Pat Flanders for use with INIFile Class and
copy.frm Unload event
Global myAppPath As String

Step2 – Modifications to frmBegin

Private Sub Form_QueryUnload(Cancel As Integer,
UnloadMode As Integer)

'****
 ' Set a global variable for the app.path
 basSetup1.myAppPath = Me.lblDestDir.Caption
 HandleFormQueryUnload UnloadMode, Cancel, Me
End Sub

Step3 – Modifications to frmCopy

Private Sub Form_Unload(Cancel As Integer)

'*****
 ' Now that the files have been copied, write an entry to the
iniFile for app.path
 Dim theINIFile As INIFile
 Dim strFileName As String
 Dim writeSuccess As Boolean
 Set theINIFile = New INIFile
 strFileName = theINIFile.GetIniFileName
 ' Attempt to write values to .ini file. Specify
 ' file name, section, and key.

 writeSuccess =
theINIFile.WriteToIniFile("CONNECTION",
"InstallDir", basSetup1.myAppPath, strFileName)

 Set theINIFile = Nothing

End Sub

Step4 – Import the INIFile class used in the HFACS
Connection Component.

 367

APPENDIX M. STORED PROCEDURES

1-0-0-1-flanAllMishapsByDate

Alter Procedure [1-0-0-1-flanAllMishapsByDate]
(
 @MishapID int = NULL
)

As
set nocount on

SELECT MishapID,
 MishapDate,
 Aircraft_FK,
 Class_FK,
 tblMishapClass.MishapClassDefinition,
 Type_FK,
 tblMishapType.MishapTypeDefinition,
 LocationID_FK,
 tblMishapLocation.MishapLocation,
 OrgID_FK,
 tblOrganization.OrgName,
 ShortDescription,
 LongDescription ,
 tblDatabaseType.DatabaseType

FROM (tblDatabaseType INNER JOIN tblMishaps ON tblDatabaseType.DatabaseType = tblMishaps.DatabaseType)
 LEFT JOIN tblMishapLocation ON tblMishaps.LocationID_FK = tblMishapLocation.MishapLocationID
 LEFT JOIN tblMishapClass ON tblMishaps.Class_FK = tblMishapClass.MishapClassCode
 LEFT JOIN tblMishapType ON tblMishaps.Type_FK = tblMishapType.MishapTypeCode
 LEFT JOIN tblOrganization ON tblMishaps.OrgID_FK = tblOrganization.OrgID

WHERE MishapID=COALESCE(@MishapID, tblMishaps.MishapID) and
tblMishaps.DatabaseType=tblDatabaseType.DatabaseType
ORDER BY MishapDate

return

 368

1-0-0-2-flanAllMishapFactorsByID

Alter Procedure [1-0-0-2-flanAllMishapFactorsByID]
(
 @MishapID_FK int = NULL
)
As
set nocount on

SELECT tblMishapFactors.FactorID,
 tblMishapFactors.MishapID_FK,
 tblMishapFactors.FactorSummary,
 tblMishapFactors.[3rdLevelCode_FK],
 tblFactors.[3rdLevelDesc],
 tblFactors.[2ndLevelCode],
 tblFactors.[2ndLevelDesc],
 tblFactors.[1stLevelCode],
 tblFactors.[1stLevelDesc]

FROM tblMishapFactors LEFT JOIN tblFactors ON tblMishapFactors.[3rdLevelCode_FK] =
tblFactors.[3rdLevelCode]

WHERE MishapID_FK=@MishapID_FK

ORDER BY tblMishapFactors.FactorID

return

 369

1-0-0-3-flanInsertFactor

Alter Procedure [1-0-0-3-flanInsertFactor]
(
 @MishapID int
)
As
set nocount on

 Insert into tblMishapFactors (MishapID_FK, FactorSummary,[3rdLevelCode_FK])

 Values (@MishapID, 'Please enter a summary','UNK')

return

 370

1-0-0-4-flanIsUserSysadmin

Alter Procedure [1-0-0-4-flanIsUserSysadmin]

As

DECLARE @IsAdmin int

SELECT IS_SRVROLEMEMBER('sysadmin') as IsUserOwner

return

 371

2-0-0-1-flanCountflanFilteredMishaps

Alter Procedure [2-0-1-1-flanCountflanFilteredMishaps]
 (
 @AC varchar(10) = NULL, --default value is NULL for all parameters not specified
 @Type varchar(3) = NULL,
 @Class varchar(1) = NULL,
 @Loc varchar(25)= NULL,
 @Svc varchar(10)= NULL,
 @Yr datetime = NULL,
 @1stLevel varchar(5) = NULL,
 @2ndLevel varchar(5) = NULL,
 @3rdLevel varchar(5) = NULL
)

As

SELECT count(dbo.tblMishaps.MishapID) as NumRecords

FROM dbo.tblDatabaseType INNER JOIN
 dbo.tblMishapLocation INNER JOIN
 dbo.tblMishapType INNER JOIN
 dbo.tblMishaps ON
 dbo.tblMishapType.MishapTypeCode = dbo.tblMishaps.Type_FK INNER JOIN
 dbo.tblMishapClass ON
 dbo.tblMishaps.Class_FK = dbo.tblMishapClass.MishapClassCode ON
 dbo.tblMishapLocation.MishapLocationID = dbo.tblMishaps.LocationID_FK INNER JOIN
 dbo.tblOrganization ON
 dbo.tblMishaps.OrgID_FK = dbo.tblOrganization.OrgID ON
 dbo.tblDatabaseType.DatabaseType = dbo.tblMishaps.DatabaseType

WHERE dbo.tblMishaps.Aircraft_FK = COALESCE(@AC, dbo.tblMishaps.Aircraft_FK) AND
 dbo.tblMishaps.Type_FK = COALESCE(@Type, dbo.tblMishaps.Type_FK) AND
 dbo.tblMishaps.Class_FK = COALESCE(@Class, dbo.tblMishaps.Class_FK) AND
 dbo.tblMishaps.LocationID_FK = COALESCE(@Loc, dbo.tblMishaps.LocationID_FK) AND
 dbo.tblMishaps.OrgID_FK = COALESCE(@Svc, dbo.tblMishaps.OrgID_FK) AND
 datepart(year,dbo.tblMishaps.MishapDate) = COALESCE(@Yr, datepart(year,dbo.tblMishaps.MishapDate))

return

 372

2-0-0-1-flanFilteredMishapTable

Alter Procedure [2-0-1-1-flanFilteredMishapTable]
 (
 @AC varchar(10) = NULL, --default value is NULL for all parameters not specified
 @Type varchar(3) = NULL,
 @Class varchar(1) = NULL,
 @Loc varchar(25)= NULL,
 @Svc varchar(10)= NULL,
 @Yr int = NULL,
 @1stLevel varchar(5) = NULL,
 @2ndLevel varchar(5) = NULL,
 @3rdLevel varchar(5) = NULL
)

As
set nocount on

SELECT dbo.tblMishaps.MishapID, dbo.tblMishaps.MishapDate,
 dbo.tblMishaps.Aircraft_FK, dbo.tblMishaps.Class_FK,
 dbo.tblMishapClass.MishapClassDefinition, dbo.tblMishaps.Type_FK,
 dbo.tblMishapType.MishapTypeDefinition,
 dbo.tblMishaps.LocationID_FK, dbo.tblMishapLocation.MishapLocation,
 dbo.tblMishaps.OrgID_FK, dbo.tblOrganization.OrgName,
 dbo.tblMishaps.ShortDescription, dbo.tblMishaps.LongDescription,
 dbo.tblMishaps.DatabaseType
FROM dbo.tblDatabaseType INNER JOIN
 dbo.tblMishapLocation INNER JOIN
 dbo.tblMishapType INNER JOIN
 dbo.tblMishaps ON
 dbo.tblMishapType.MishapTypeCode = dbo.tblMishaps.Type_FK INNER JOIN
 dbo.tblMishapClass ON
 dbo.tblMishaps.Class_FK = dbo.tblMishapClass.MishapClassCode ON
 dbo.tblMishapLocation.MishapLocationID = dbo.tblMishaps.LocationID_FK INNER JOIN
 dbo.tblOrganization ON
 dbo.tblMishaps.OrgID_FK = dbo.tblOrganization.OrgID ON
 dbo.tblDatabaseType.DatabaseType = dbo.tblMishaps.DatabaseType

WHERE dbo.tblMishaps.Aircraft_FK = COALESCE(@AC, dbo.tblMishaps.Aircraft_FK) AND
 dbo.tblMishaps.Type_FK = COALESCE(@Type, dbo.tblMishaps.Type_FK) AND
 dbo.tblMishaps.Class_FK = COALESCE(@Class, dbo.tblMishaps.Class_FK) AND
 dbo.tblMishaps.LocationID_FK = COALESCE(@Loc, dbo.tblMishaps.LocationID_FK) AND
 dbo.tblMishaps.OrgID_FK = COALESCE(@Svc, dbo.tblMishaps.OrgID_FK) AND
 datepart(year,dbo.tblMishaps.MishapDate) = COALESCE(@Yr, datepart(year,dbo.tblMishaps.MishapDate))

return

 373

2-0-2-1-flanSummaryGetNumbers

Alter Procedure [2-0-2-1-flanSummaryGetNumbers]
 (
 @AC_Type varchar(10) = NULL,
 @Mishap_Type varchar(3) = NULL,
 @Mishap_Class varchar(1) = NULL,
 @Location varchar(25)= NULL,
 @Service varchar(10)= NULL,
 @Year int = NULL,
 @1stLevel varchar(5) = NULL,
 @2ndLevel varchar(5) = NULL,
 @3rdLevel varchar(5) = NULL
)

As

Set nocount on

--Insert filtered data into Temp Filter_Table

SELECT DISTINCT dbo.tblMishaps.MishapID INTO
#Result

FROM dbo.tblMishaps INNER JOIN
 dbo.tblDatabaseType ON
dbo.tblMishaps.DatabaseType=dbo.tblDatabaseType.Databas
eType INNER JOIN
 dbo.tblMishapFactors ON
dbo.tblMishaps.MishapID =
dbo.tblMishapFactors.MishapID_FK INNER JOIN
 dbo.tblFactors ON
dbo.tblMishapFactors.[3rdLevelCode_FK] =
dbo.tblFactors.[3rdLevelCode]

WHERE dbo.tblMishaps.Aircraft_FK =
COALESCE(@AC_Type, dbo.tblMishaps.Aircraft_FK)
AND
 dbo.tblMishaps.Type_FK =
COALESCE(@Mishap_Type, dbo.tblMishaps.Type_FK)
AND
 dbo.tblMishaps.Class_FK =
COALESCE(@Mishap_Class,dbo. tblMishaps.Class_FK)
AND
 dbo.tblMishaps.LocationID_FK =
COALESCE(@Location, dbo.tblMishaps.LocationID_FK)
AND
 dbo.tblMishaps.OrgID_FK =
COALESCE(@Service, dbo.tblMishaps.OrgID_FK) AND
 datepart(year,dbo.tblMishaps.MishapDate) =
COALESCE(@Year,
datepart(year,dbo.tblMishaps.MishapDate)) AND
 dbo.tblFactors.[1stLevelCode] =
COALESCE(@1stLevel, dbo.tblFactors.[1stLevelCode])
AND
 dbo.tblFactors.[2ndLevelCode] =
COALESCE(@2ndLevel, dbo.tblFactors.[2ndLevelCode])
AND
 dbo.tblFactors.[3rdLevelCode] =
COALESCE(@3rdLevel, dbo.tblFactors.[3rdLevelCode])
AND

dbo.tblMishaps.DatabaseType=dbo.tblDatabaseType.Databas
eType

------------Build MishapCount resultset ------------
SELECT

(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[1stLevelCode] = 'MG'))))) AS
MG,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[1stLevelCode] = 'MC'))))) AS
MC,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[1stLevelCode] = 'WC'))))) AS
WC,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[1stLevelCode] = 'MA'))))) AS
MA,
(

 374

SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFact ors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[2ndLevelCode] = 'ORG'))))) AS
ORG,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[2ndLevelCode] = 'SUP'))))) AS
SUP,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[2ndLevelCode] = 'MED'))))) AS
MED,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[2ndLevelCode] = 'CRW'))))) AS
CRW,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (

 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[2ndLevelCode] = 'RDY'))))) AS
RDY,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[2ndLevelCode] = 'ENV'))))) AS
ENV,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[2ndLevelCode] = 'EQP'))))) AS
EQP,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[2ndLevelCode] = 'WRK'))))) AS
WRK,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors

 375

 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[2ndLevelCode] = 'ERR'))))) AS
ERR,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblFactors,
dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND

 dbo.tblFactors.[3rdLevelCode] =
dbo.tblMishapFactors.[3rdLevelCode_FK] AND (

 dbo.tblFactors.[2ndLevelCode] = 'VIO'))))) AS
VIO,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'PRO'))))) AS PRO,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'DOC'))))) AS DOC,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'DES'))))) AS DES,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors

 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'RES'))))) AS RES,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'IDQ'))))) AS IDQ,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'OPS'))))) AS OPS,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'PRB'))))) AS PRB,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'MIS'))))) AS MIS,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'MNT'))))) AS MNT,
(
SELECT Count([MishapID])
FROM #Result

 376

WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'PHY'))))) AS PHY,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'LIM'))))) AS LIM,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'COM'))))) AS COM,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'ASS'))))) AS ASS,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'ADA'))))) AS ADA,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'TRG'))))) AS TRG,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'CRT'))))) AS CRT,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'INF'))))) AS INF,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'LGT'))))) AS LGT,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.t blMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'WXE'))))) AS WXE,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'EHZ'))))) AS EHZ,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (

 377

 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'DMG'))))) AS DMG,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'UNA'))))) AS UNA,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'DUC'))))) AS DUC,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'CON'))))) AS CON,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'OBS'))))) AS OBS,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'INA'))))) AS INA,

(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'ATT'))))) AS ATT,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'JDG'))))) AS JDG,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'KNW'))))) AS KNW,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'SKL'))))) AS SKL,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'ROU'))))) AS ROU,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors

 378

 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'IFC'))))) AS IFC,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (
 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'FLG'))))) AS FLG,
(
SELECT Count([MishapID])
FROM #Result
WHERE (((#Result.MishapID) In (

 SELECT DISTINCT
#Result.MishapID
 FROM #Result, dbo.tblMishapFactors
 WHERE #Result.MishapID =
dbo.tblMishapFactors.MishapID_FK AND (

 dbo.tblMishapFactors.[3rdLevelCode_FK] =
'EXC'))))) AS EXC,
(
SELECT Count([#Result].[MishapID])
FROM #Result)
AS TotalMishaps;

return

 379

2-0-2-1-flanSummaryGetRecords

Alter Procedure [2-0-2-1-flanSummaryGetRecords]
 (
 @AC varchar(10) =
NULL,
 @Type varchar(3) =
NULL,
 @Class varchar(1) =
NULL,
 @Loc varchar(25)=
NULL,
 @Svc varchar(10)=
NULL,
 @Yr int =
NULL,
 @1stLevel varchar(5) =
NULL,
 @2ndLevel varchar(5) =
NULL,
 @3rdLevel varchar(5) =
NULL
)

As
set nocount on

SELECT DISTINCT dbo.tblMishapFactors.[MishapID_FK]
INTO #Result

FROM dbo.tblMishapFactors INNER JOIN
dbo.tblFactors ON
dbo.tblMishapFactors.[3rdLevelCode_FK] =
dbo.tblFactors.[3rdLevelCode]

WHERE dbo.tblFactors.[1stLevelCode] =
COALESCE(@1stLevel, dbo.tblFactors.[1stLevelCode])
AND
 dbo.tblFactors.[2ndLevelCode] =
COALESCE(@2ndLevel, dbo.tblFactors.[2ndLevelCode])
AND
 dbo.tblFactors.[3rdLevelCode] =
COALESCE(@3rdLevel, dbo.tblFactors.[3rdLevelCode])

ORDER BY dbo.tblMishapFactors.[MishapID_FK]

---Inner Query

SELECT

#Result.[MishapID_FK] ,
dbo.tblMishaps.[MishapID],
dbo.tblMishaps.[MishapDate],
dbo.tblMishaps.[Aircraft_FK],
dbo.tblMishaps.[Class_FK],
dbo.tblMishaps.[Type_FK],

dbo.tblMishaps.[LocationID_FK],
dbo.tblMishaps.[OrgID_FK],
dbo.tblMishaps.[DatabaseType],
dbo.tblMishaps.[ShortDescription],
dbo.tblMishaps.[LongDescription],
dbo.tblMishapClass .[MishapClassCode],
dbo.tblMishapClass .[MishapClassDefinition],
dbo.tblMishapLocation.[MishapLocationID],
dbo.tblMishapLocation.[MishapLocation],
dbo.tblMishapType .[MishapTypeCode],
dbo.tblMishapType .[MishapTypeDefinition],
dbo.tblOrganization .[OrgID],
dbo.tblOrganization .[OrgName]

FROM #Result LEFT JOIN
 dbo.tblMishaps ON
dbo.tblMishaps.MishapID=#Result.[MishapID_FK] INNER
JOIN
 dbo.tblDatabaseType ON
dbo.tblMishaps.DatabaseType=dbo.tblDatabaseType.Databas
eType INNER JOIN
 dbo.tblMishapClass ON
dbo.tblMishaps.Class_FK=dbo.tblMishapClass.MishapClass
Code INNER JOIN
 dbo.tblMishapLocation ON
dbo.tblMishaps.LocationID_FK=dbo.tblMishapLocation.Mis
hapLocationID INNER JOIN
 dbo.tblMishapType ON
dbo.tblMishaps.Type_FK=dbo.tblMishapType.MishapTypeC
ode INNER JOIN
 dbo.tblOrganization ON
dbo.tblMishaps.OrgID_FK=dbo.tblOrganization .OrgID

WHERE dbo.tblMishaps.Aircraft_FK =
COALESCE(@AC, dbo.tblMishaps.Aircraft_FK) AND
 dbo.tblMishaps.Type_FK = COALESCE(@Type,
dbo.tblMishaps.Type_FK) AND
 dbo.tblMishaps.Class_FK =
COALESCE(@Class, dbo.tblMishaps.Class_FK) AND
 dbo.tblMishaps.LocationID_FK =
COALESCE(@Loc, dbo.tblMishaps.LocationID_FK) AND
 dbo.tblMishaps.OrgID_FK = COALESCE(@Svc,
dbo.tblMishaps.OrgID_FK) AND
 datepart(year,dbo.tblMishaps.MishapDate) =
COALESCE(@Yr,
datepart(year,dbo.tblMishaps.MishapDate)) AND

dbo.tblMishaps.DatabaseType=dbo.tblDatabaseType.Databas
eType

return

 380

4-0-1-0-flanCrossTabForGraphing

Alter Procedure [4-0-1-0-flanCrossTabForGraphing]

 (

 @colLeft varchar(500),
 @colTop varchar(500)
)

As
 /* set nocount on */

execute dbo.rac @grpcol=@colLeft, @pvtcol=@colTop, @transform='count(*)', @from ='dbo.vwFlanForGraphs',
@where='',

 @printagg='n',@grand_totals='n', @row_totals='n', @emptycell='0'

 return

 381

8-0-0-0-NelsonReportAllMishaps

Alter Procedure [8-0-0-0-NelsonReportAllMishaps]
 (
 @AC_Type varchar(10) = NULL,
 @Mishap_Type varchar(3) = NULL,
 @Mishap_Class varchar(1) = NULL,
 @Location varchar(25)= NULL,
 @Service varchar(10)= NULL,
 @Year int = NULL,
 @1stLevel varchar(5) = NULL,
 @2ndLevel varchar(5) = NULL,
 @3rdLevel varchar(5) = NULL
)

As

Set nocount on

--Insert filtered data into Temp Filter_Table

SELECT DISTINCT tblMishaps.MishapID INTO
#tblTemp_Filter_Table

FROM tblMishaps INNER JOIN
 tblDatabaseType ON
tblMishaps.DatabaseType=tblDatabaseType.DatabaseType
INNER JOIN
 tblMishapFactors ON
tblMishaps.MishapID = tblMishapFactors.MishapID_FK
INNER JOIN
 tblFactors ON
tblMishapFactors.[3rdLevelCode_FK] =
tblFactors.[3rdLevelCode]

WHERE tblMishaps.Aircraft_FK =
COALESCE(@AC_Type, tblMishaps.Aircraft_FK) AND
 tblMishaps.Type_FK =
COALESCE(@Mishap_Type, tblMishaps.Type_FK) AND
 tblMishaps.Class_FK =
COALESCE(@Mishap_Class, tblMishaps.Class_FK) AND
 tblMishaps.LocationID_FK =
COALESCE(@Location, tblMishaps.LocationID_FK) AND
 tblMishaps.OrgID_FK = COALESCE(@Service,
tblMishaps.OrgID_FK) AND
 datepart(year,tblMishaps.MishapDate) =
COALESCE(@Year, datepart(year,tblMishaps.MishapDate))
AND
 tblFactors.[1stLevelCode] =
COALESCE(@1stLevel, tblFactors.[1stLevelCode]) AND
 tblFactors.[2ndLevelCode] =
COALESCE(@2ndLevel, tblFactors.[2ndLevelCode]) AND
 tblFactors.[3rdLevelCode] =
COALESCE(@3rdLevel, tblFactors.[3rdLevelCode]) AND

tblMishaps.DatabaseType=tblDatabaseType.DatabaseType

------------Build MishapCount resultset ------------
SELECT
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors

 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (
 tblFactors.[1stLevelCode]
= 'MG'))))) AS MG,
(
SELECT Count([MishapID])
FROM #tblT emp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (
 tblFactors.[1stLevelCode]
= 'MC'))))) AS MC,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (
 tblFactors.[1stLevelCo de]
= 'WC'))))) AS WC,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (
 tblFactors.[1stLevelCode]
= 'MA'))))) AS MA,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (

 382

 tblFactors.[2ndLevelCode]
= 'ORG'))))) AS ORG,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (
 tblFactors.[2ndLevelCode]
= 'SUP'))))) AS SUP,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (
 tblFactors.[2ndLevelCode]
= 'MED'))))) AS MED,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (
 tblFactors.[2ndLevelCode]
= 'CRW'))))) AS CRW,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (
 tblFactors.[2ndLevelCode]
= 'RDY'))))) AS RDY,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID

 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (
 tblFactors.[2ndLevelCode]
= 'ENV'))))) AS ENV,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, t blMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (
 tblFactors.[2ndLevelCode]
= 'EQP'))))) AS EQP,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (
 tblFactors.[2ndLevelCode]
= 'WRK'))))) AS WRK,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (
 tblFactors.[2ndLevelCode]
= 'ERR'))))) AS ERR,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblFactors, tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND
 tblFactors.[3rdLevelCode]
= tblMishapFactors.[3rdLevelCode_FK] AND (

 383

 tblFactors.[2ndLevelCode]
= 'VIO'))))) AS VIO,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'PRO'))))) AS PRO,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'DOC'))))) AS DOC,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'DES'))))) AS DES,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'RES'))))) AS RES,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors

 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'IDQ'))))) AS IDQ,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'OPS'))))) AS OPS,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'PRB'))))) AS PRB,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'MIS'))))) AS MIS,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'MNT'))))) AS MNT,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID

 384

 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'PHY'))))) AS PHY,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'LIM'))))) AS LIM,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'COM'))))) AS COM,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'ASS'))))) AS ASS,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'ADA'))))) AS ADA,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (

 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'TRG'))))) AS TRG,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'CRT'))))) AS CRT,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] = 'INF')))))
AS INF,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'LGT'))))) AS LGT,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'WXE'))))) AS WXE,
(
SELECT Count([MishapID])

 385

FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'EHZ'))))) AS EHZ,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'DMG'))))) AS DMG,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'UNA'))))) AS UNA,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'DUC'))))) AS DUC,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'CON'))))) AS CON,

(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'OBS'))))) AS OBS,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'INA'))))) AS INA,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'ATT'))))) AS ATT,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'JDG'))))) AS JDG,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 386

 tblMishapFactors.[3rdLevelCode_FK] =
'KNW'))))) AS KNW,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'SKL'))))) AS SKL,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'ROU'))))) AS ROU,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] = 'IFC')))))
AS IFC,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'FLG'))))) AS FLG,
(
SELECT Count([MishapID])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishapID) In (
 SELECT DISTINCT
#tblTemp_Filter_Table.MishapID
 FROM #tblTemp_Filter_Table,
tblMishapFactors
 WHERE
#tblTemp_Filter_Table.MishapID =
tblMishapFactors.MishapID_FK AND (

 tblMishapFactors.[3rdLevelCode_FK] =
'EXC'))))) AS EXC,
(
SELECT Count([#tblTemp_Filter_Table].[MishapID])
FROM #tblTemp_Filter_Table)
AS TotalMishaps;

return

 387

8-0-0-1-flanReportByAircraft

Alter Procedure [8-0-0-1-flanReportByAircraft]

As

SET NOCOUNT ON

CREATE TABLE #nResult3 (
 Aircraft_FK varchar(255),
 ADA int DEFAULT 0,
 ASS int DEFAULT 0,
 ATT int DEFAULT 0,
 COM int DEFAULT 0,
 CON int DEFAULT 0,
 CRT int DEFAULT 0,
 DES int DEFAULT 0,
 DMG int DEFAULT 0,
 DOC int DEFAULT 0,
 DUC int DEFAULT 0,
 EHZ int DEFAULT 0,
 EXC int DEFAULT 0,
 FLG int DEFAULT 0,
 IDQ int DEFAULT 0,
 IFC int DEFAULT 0,
 INA int DEFAULT 0,
 INF int DEFAULT 0,
 JDG int DEFAULT 0,
 KNW int DEFAULT 0,
 LGT int DEFAULT 0,
 LIM int DEFAULT 0,
 MIS int DEFAULT 0,
 MNT int DEFAULT 0,
 OBS int DEFAULT 0,
 OPS int DEFAULT 0,
 PHY int DEFAULT 0,
 PRB int DEFAULT 0,
 PRO int DEFAULT 0,
 RES int DEFAULT 0,
 ROU int DEFAULT 0,
 SKL int DEFAULT 0,
 TRG int DEFAULT 0,
 UNA int DEFAULT 0,
 UNK int DEFAULT 0,
 WXE int DEFAULT 0
)
CREATE TABLE #nResult2 (
 Aircraft_FK varchar(255),
 CRW int DEFAULT 0,
 ENV int DEFAULT 0,
 EQP int DEFAULT 0,
 ERR int DEFAULT 0,
 MED int DEFAULT 0,
 ORG int DEFAULT 0,
 RDY int DEFAULT 0,
 SUP int DEFAULT 0,
 UNK int DEFAULT 0,
 VIO int DEFAULT 0,
 WRK int DEFAULT 0
)
CREATE TABLE #nResult1 (
 Aircraft_FK varchar(255),
 MA int DEFAULT 0,
 MC int DEFAULT 0,
 MG int DEFAULT 0,
 UN int DEFAULT 0,
 WC int DEFAULT 0

)
CREATE TABLE #nResultFinal (
 Aircraft_FK varchar(255),
 ADA int DEFAULT 0,
 ASS int DEFAULT 0,
 ATT int DEFAULT 0,
 COM int DEFAULT 0,
 CON int DEFAULT 0,
 CRT int DEFAULT 0,
 DES int DEFAULT 0,
 DMG int DEFAULT 0,
 DOC int DEFAULT 0,
 DUC int DEFAULT 0,
 EHZ int DEFAULT 0,
 EXC int DEFAULT 0,
 FLG int DEFAULT 0,
 IDQ int DEFAULT 0,
 IFC int DEFAULT 0,
 INA int DEFAULT 0,
 INF int DEFAULT 0,
 JDG int DEFAULT 0,
 KNW int DEFAULT 0,
 LIM int DEFAULT 0,
 LGT int DEFAULT 0,
 MIS int DEFAULT 0,
 MNT int DEFAULT 0,
 OBS int DEFAULT 0,
 OPS int DEFAULT 0,
 PHY int DEFAULT 0,
 PRB int DEFAULT 0,
 PRO int DEFAULT 0,
 RES int DEFAULT 0,
 ROU int DEFAULT 0,
 SKL int DEFAULT 0,
 TRG int DEFAULT 0,
 UNA int DEFAULT 0,
 WXE int DEFAULT 0,
 CRW int DEFAULT 0,
 WRK int DEFAULT 0,
 ENV int DEFAULT 0,
 EQP int DEFAULT 0,
 ERR int DEFAULT 0,
 MED int DEFAULT 0,
 ORG int DEFAULT 0,
 RDY int DEFAULT 0,
 SUP int DEFAULT 0,
 VIO int DEFAULT 0,
 MA int DEFAULT 0,
 MC int DEFAULT 0,
 MG int DEFAULT 0,
 WC int DEFAULT 0
)
--
----------------------------------FOR THIRD LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [3rdLevelCode], Aircraft_FK INTO
#nTemp3
FROM [vwFlanReports-2-2-Aircraft3]

UPDATE #nTemp3
SET Aircraft_FK = 'None'
WHERE Aircraft_FK is null
--Now run the crosstab
 INSERT #nResult3

 388

 EXEC dbo.rac @grpcol='Aircraft_FK',
@pvtcol='[3rdLevelCode]', @transform='count(*)', @from
='#nTemp3', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'

------------------------------ FOR SECOND LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [2ndLevelCode], Aircraft_FK INTO
#nTemp2
FROM [vwFlanReports-2-2-Aircraft2]

UPDATE #nTemp2
SET Aircraft_FK = 'None'
WHERE Aircraft_FK is null
--Now run the crosstab
 INSERT #nResult2
 EXEC dbo.rac @grpcol='Aircraft_FK',
@pvtcol='[2ndLevelCode]', @transform='count(*)', @from
='#nTemp2', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'

----------------------------------FOR FIRST LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [1stLevelCode], Aircraft_FK INTO
#nTemp1
FROM [vwFlanReports-2-2-Aircraft1]

UPDATE #nTemp1
SET Aircraft_FK = 'None'
WHERE Aircraft_FK is null
--Now run the crosstab
 INSERT #nResult1
 EXEC dbo.rac @grpcol='Aircraft_FK',
@pvtcol='[1stLevelCode]', @transform='count(*)', @from
='#nTemp1', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'
--

 INSERT #nResultFinal
 SELECT dbo.#nResult3.Aircraft_FK,
dbo.#nResult3.ADA, dbo.#nResult3.ASS,
dbo.#nResult3.ATT, dbo.#nResult3.COM,
dbo.#nResult3.CON, dbo.#nResult3.CRT,
dbo.#nResult3.DES,
 dbo.#nResult3.DMG,
dbo.#nResult3.DOC, dbo.#nResult3.DUC,
dbo.#nResult3.EHZ, dbo.#nResult3.EXC,
dbo.#nResult3.FLG, dbo.#nResult3.IDQ, dbo.#nResult3.IFC,
dbo.#nResult3.INA, dbo.#nResult3.INF,
 dbo.#nResult3.JDG,
dbo.#nResult3.KNW, dbo.#nResult3.LIM,
dbo.#nResult3.LGT, dbo.#nResult3.MIS,
dbo.#nResult3.MNT, dbo.#nResult3.OBS,
 dbo.#nResult3.OPS,
dbo.#nResult3.PHY, dbo.#nResult3.PRB,
dbo.#nResult3.PRO, dbo.#nResult3.RES,
dbo.#nResult3.ROU, dbo.#nResult3.SKL,
 dbo.#nResult3.TRG,
dbo.#nResult3.UNA, dbo.#nResult3.WXE,
dbo.#nResult2.CRW, dbo.#nResult2.WRK,
dbo.#nResult2.ENV, dbo.#nResult2.EQP,
dbo.#nResult2.ERR,

 dbo.#nResult2.MED,
dbo.#nResult2.ORG, dbo.#nResult2.RDY,
dbo.#nResult2.SUP, dbo.#nResult2.VIO, dbo.#nResult1.MA,
dbo.#nResult1.MC,
 dbo.#nResult1.MG,
dbo.#nResult1.WC
 FROM dbo.#nResult3 INNER JOIN
 dbo.#nResult2 ON dbo.#nResult3.Aircraft_FK
= dbo.#nResult2.Aircraft_FK INNER JOIN
 dbo.#nResult1 ON dbo.#nResult3.Aircraft_FK
= dbo.#nResult1.Aircraft_FK

 SELECT tblMishaps.Aircraft_FK,
Count(tblMishaps.MishapID) AS TotalMishaps INTO
#nResultTotal
 FROM dbo.tblMishaps
 GROUP BY tblMishaps.Aircraft_FK

 SELECT dbo.#nResultFinal.Aircraft_FK,
dbo.#nResultFinal.ADA, dbo.#nResultFinal.ASS,
dbo.#nResultFinal.ATT, dbo.#nResultFinal.COM,
dbo.#nResultFinal.CON, dbo.#nResultFinal.CRT,
dbo.#nResultFinal.DES,
 dbo.#nResultFinal.DMG,
dbo.#nResultFinal.DOC, dbo.#nResultFinal.DUC,
dbo.#nResultFinal.EHZ, dbo.#nResultFinal.EXC,
dbo.#nResultFinal.FLG, dbo.#nResultFinal.IDQ,
dbo.#nResultFinal.IFC, dbo.#nResultFinal.INA,
dbo.#nResultFinal.INF,
 dbo.#nResultFinal.JDG,
dbo.#nResultFinal.KNW, dbo.#nResultFinal.LIM,
dbo.#nResultFinal.LGT, dbo.#nResultFinal.MIS,
dbo.#nResultFinal.MNT, dbo.#nResultFinal.OBS,
 dbo.#nResultFinal.OPS,
dbo.#nResultFinal.PHY, dbo.#nResultFinal.PRB,
dbo.#nResultFinal.PRO, dbo.#nResultFinal.RES,
dbo.#nResultFinal.ROU, dbo.#nResultFinal.SKL,
 dbo.#nResultFinal.TRG,
dbo.#nResultFinal.UNA, dbo.#nResultFinal.WXE,
dbo.#nResultFinal.CRW, dbo.#nResultFinal.WRK,
dbo.#nResultFinal.ENV, dbo.#nResultFinal.EQP,
dbo.#nResultFinal.ERR,
 dbo.#nResultFinal.MED,
dbo.#nResultFinal.ORG, dbo.#nResultFinal.RDY,
dbo.#nResultFinal.SUP, dbo.#nResultFinal.VIO,
dbo.#nResultFinal.MA, dbo.#nResultFinal.MC,
 dbo.#nResultFinal.MG,
dbo.#nResultFinal.WC,
 dbo.#nResultTotal.TotalMishaps
 FROM dbo.#nResultFinal INNER JOIN
 dbo.#nResultTotal ON
dbl.#nResultFinal.Aircraft_FK=dbo.#nResultTotal.Aircraft_
FK

 DROP TABLE #nResultFinal
 DROP TABLE #nResultTotal
 DROP TABLE #nResult3
 DROP TABLE #nResult2
 DROP TABLE #nResult1

return

 389

8-0-0-2-NelsonReportByLocation

Alter Procedure [8-0-0-2-NelsonReportByLocation]

As

SET NOCOUNT ON

CREATE TABLE #nResult3 (
 LocationID_FK varchar(255),
 ADA int DEFAULT 0,
 ASS int DEFAULT 0,
 ATT int DEFAULT 0,
 COM int DEFAULT 0,
 CON int DEFAULT 0,
 CRT int DEFAULT 0,
 DES int DEFAULT 0,
 DMG int DEFAULT 0,
 DOC int DEFAULT 0,
 DUC int DEFAULT 0,
 EHZ int DEFAULT 0,
 EXC int DEFAULT 0,
 FLG int DEFAULT 0,
 IDQ int DEFAULT 0,
 IFC int DEFAULT 0,
 INA int DEFAULT 0,
 INF int DEFAULT 0,
 JDG int DEFAULT 0,
 KNW int DEFAULT 0,
 LGT int DEFAULT 0,
 LIM int DEFAULT 0,
 MIS int DEFAULT 0,
 MNT int DEFAULT 0,
 OBS int DEFAULT 0,
 OPS int DEFAULT 0,
 PHY int DEFAULT 0,
 PRB int DEFAULT 0,
 PRO int DEFAULT 0,
 RES int DEFAULT 0,
 ROU int DEFAULT 0,
 SKL int DEFAULT 0,
 TRG int DEFAULT 0,
 UNA int DEFAULT 0,
 UNK int DEFAULT 0,
 WXE int DEFAULT 0
)
CREATE TABLE #nResult2 (
 LocationID_FK varchar(255),
 CRW int DEFAULT 0,
 ENV int DEFAULT 0,
 EQP int DEFAULT 0,
 ERR int DEFAULT 0,
 MED int DEFAULT 0,
 ORG int DEFAULT 0,
 RDY int DEFAULT 0,
 SUP int DEFAULT 0,
 UNK int DEFAULT 0,
 VIO int DEFAULT 0,
 WRK int DEFAULT 0
)
CREATE TABLE #nResult1 (
 LocationID_FK varchar(255),
 MA int DEFAULT 0,
 MC int DEFAULT 0,
 MG int DEFAULT 0,
 UN int DEFAULT 0,
 WC int DEFAULT 0

)
CREATE TABLE #nResultFinal (
 LocationID_FK varchar(255),
 ADA int DEFAULT 0,
 ASS int DEFAULT 0,
 ATT int DEFAULT 0,
 COM int DEFAULT 0,
 CON int DEFAULT 0,
 CRT int DEFAULT 0,
 DES int DEFAULT 0,
 DMG int DEFAULT 0,
 DOC int DEFAULT 0,
 DUC int DEFAULT 0,
 EHZ int DEFAULT 0,
 EXC int DEFAULT 0,
 FLG int DEFAULT 0,
 IDQ int DEFAULT 0,
 IFC int DEFAULT 0,
 INA int DEFAULT 0,
 INF int DEFAULT 0,
 JDG int DEFAULT 0,
 KNW int DEFAULT 0,
 LIM int DEFAULT 0,
 LGT int DEFAULT 0,
 MIS int DEFAULT 0,
 MNT int DEFAULT 0,
 OBS int DEFAULT 0,
 OPS int DEFAULT 0,
 PHY int DEFAULT 0,
 PRB int DEFAULT 0,
 PRO int DEFAULT 0,
 RES int DEFAULT 0,
 ROU int DEFAULT 0,
 SKL int DEFAULT 0,
 TRG int DEFAULT 0,
 UNA int DEFAULT 0,
 WXE int DEFAULT 0,
 CRW int DEFAULT 0,
 WRK int DEFAULT 0,
 ENV int DEFAULT 0,
 EQP int DEFAULT 0,
 ERR int DEFAULT 0,
 MED int DEFAULT 0,
 ORG int DEFAULT 0,
 RDY int DEFAULT 0,
 SUP int DEFAULT 0,
 VIO int DEFAULT 0,
 MA int DEFAULT 0,
 MC int DEFAULT 0,
 MG int DEFAULT 0,
 WC int DEFAULT 0
)
--
----------------------------------FOR THIRD LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [3rdLevelCode], LocationID_FK INTO
#nTemp3
FROM [vwFlanReports-2-3-Location3]

UPDATE #nTemp3
SET LocationID_FK = 'None'
WHERE LocationID_FK is null
--Now run the crosstab
 INSERT #nResult3

 390

 EXEC dbo.rac @grpcol= 'LocationID_FK',
@pvtcol='[3rdLevelCode]', @transform='count(*)', @from
='#nTemp3', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'

----------------------------- FOR SECOND LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [2ndLevelCode], LocationID_FK
INTO #nTemp2
FROM [vwFlanReports-2-3-Location2]

UPDATE #nTemp2
SET LocationID_FK = 'None'
WHERE LocationID_FK is null
--Now run the crosstab
 INSERT #nResult2
 EXEC dbo.rac @grpcol= 'LocationID_FK',
@pvtcol='[2ndLevelCode]', @transform='count(*)', @from
='#nTemp2', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'

-----------------------------------FOR FIRST LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [1stLevelCode], LocationID_FK INTO
#nTemp1
FROM [vwFlanReports-2-3-Location1]

UPDATE #nTemp1
SET LocationID_FK = 'None'
WHERE LocationID_FK is null
--Now run the crosstab
 INSERT #nResult1
 EXEC dbo.rac @grpcol='LocationID_FK',
@pvtcol='[1stLevelCode]', @transform='count(*)', @from
='#nTemp1', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'
--

 INSERT #nResultFinal
 SELECT dbo.#nResult3.LocationID_FK,
dbo.#nResult3.ADA, dbo.#nResult3.ASS,
dbo.#nResult3.ATT, dbo.#nResult3.COM,
dbo.#nResult3.CON, dbo.#nResult3.CRT,
dbo.#nResult3.DES,
 dbo.#nResult3.DMG,
dbo.#nResult3.DOC, dbo.#nResult3.DUC,
dbo.#nResult3.EHZ, dbo.#nResult3.EXC,
dbo.#nResult3.FLG, dbo.#nResult3.IDQ, dbo.#nResult3.IFC,
dbo.#nResult3.INA, dbo.#nResult3.INF,
 dbo.#nResult3.JDG,
dbo.#nResult3.KNW, dbo.#nResult3.LIM,
dbo.#nResult3.LGT, dbo.#nResult3.MIS,
dbo.#nResult3.MNT, dbo.#nResult3.OBS,
 dbo.#nResult3.OPS,
dbo.#nResult3.PHY, dbo.#nResult3.PRB,
dbo.#nResult3.PRO, dbo.#nResult3.RES,
dbo.#nResult3.ROU, dbo.#nResult3.SKL,
 dbo.#nResult3.TRG,
dbo.#nResult3.UNA, dbo.#nResult3.WXE,
dbo.#nResult2.CRW, dbo.#nResult2.WRK,
dbo.#nResult2.ENV, dbo.#nResult2.EQP,
dbo.#nResult2.ERR,
 dbo.#nResult2.MED,
dbo.#nResult2.ORG, dbo.#nResult2.RDY,

dbo.#nResult2.SUP, dbo.#nResult2.VIO, dbo.#nResult1.MA,
dbo.#nResult1.MC,
 dbo.#nResult1.MG,
dbo.#nResult1.WC
 FROM dbo.#nResult3 INNER JOIN
 dbo.#nResult2 ON
dbo.#nResult3.LocationID_FK =
dbo.#nResult2.LocationID_FK INNER JOIN
 dbo.#nResult1 ON
dbo.#nResult3.LocationID_FK =
dbo.#nResult1.LocationID_FK

 SELECT tblMishaps.LocationID_FK,
Count(tblMishaps.MishapID) AS TotalMishaps INTO
#nResultTotal
 FROM dbo.tblMishaps
 GROUP BY tblMishaps.LocationID_FK

 SELECT dbo.#nResultFinal.LocationID_FK,
dbo.#nResultFinal.ADA, dbo.#nResultFinal.ASS,
dbo.#nResultFinal.ATT, dbo.#nResultFinal.COM,
dbo.#nResultFinal.CON, dbo.#nResultFinal.CRT,
dbo.#nResultFinal.DES,
 dbo.#nResultFinal.DMG,
dbo.#nResultFinal.DOC, dbo.#nResultFinal.DUC,
dbo.#nResultFinal.EHZ, dbo.#nResultFinal.EXC,
dbo.#nResultFinal.FLG, dbo.#nResultFinal.IDQ,
dbo.#nResultFinal.IFC, dbo.#nResultFinal.INA,
dbo.#nResultFinal.INF,
 dbo.#nResultFinal.JDG,
dbo.#nResultFinal.KNW, dbo.#nResultFinal.LIM,
dbo.#nResultFinal.LGT, dbo.#nResultFinal.MIS,
dbo.#nResultFinal.MNT, dbo.#nResultFinal.OBS,
 dbo.#nResultFinal.OPS,
dbo.#nResultFinal.PHY, dbo.#nResultFinal.PRB,
dbo.#nResultFinal.PRO, dbo.#nResultFinal.RES,
dbo.#nResultFinal.ROU, dbo.#nResultFinal.SKL,
 dbo.#nResultFinal.TRG,
dbo.#nResultFinal.UNA, dbo.#nResultFinal.WXE,
dbo.#nResultFinal.CRW, dbo.#nResultFinal.WRK,
dbo.#nResultFinal.ENV, dbo.#nResultFinal.EQP,
dbo.#nResultFinal.ERR,
 dbo.#nResultFinal.MED,
dbo.#nResultFinal.ORG, dbo.#nResultFinal.RDY,
dbo.#nResultFinal.SUP, dbo.#nResultFinal.VIO,
dbo.#nResultFinal.MA, dbo.#nResultFinal.MC,
 dbo.#nResultFinal.MG,
dbo.#nResultFinal.WC, dbo.#nResultTotal.TotalMishaps,
dbo.tblMishapLocation.MishapLocation

 FROM dbo.#nResultFinal INNER JOIN
 dbo.#nResultTotal ON
dbo.#nResultFinal.LocationID_FK =
dbo.#nResultTotal.LocationID_FK INNER JOIN
 dbo.tblMishapLocation ON
dbo.#nResultFinal.LocationID_FK =
dbo.tblMishapLocation.MishapLocationID

 DROP TABLE #nResultFinal
 DROP TABLE #nResultTotal
 DROP TABLE #nResult3
 DROP TABLE #nResult2

 391

 DROP TABLE #nResult1

return

 392

8-0-0-3-NelsonReportByClass

Alter Procedure [8-0-0-3-NelsonReportByClass]

As

SET NOCOUNT ON

CREATE TABLE #nResult3 (
 Class_FK varchar(255),
 ADA int DEFAULT 0,
 ASS int DEFAULT 0,
 ATT int DEFAULT 0,
 COM int DEFAULT 0,
 CON int DEFAULT 0,
 CRT int DEFAULT 0,
 DES int DEFAULT 0,
 DMG int DEFAULT 0,
 DOC int DEFAULT 0,
 DUC int DEFAULT 0,
 EHZ int DEFAULT 0,
 EXC int DEFAULT 0,
 FLG int DEFAULT 0,
 IDQ int DEFAULT 0,
 IFC int DEFAULT 0,
 INA int DEFAULT 0,
 INF int DEFAULT 0,
 JDG int DEFAULT 0,
 KNW int DEFAULT 0,
 LGT int DEFAULT 0,
 LIM int DEFAULT 0,
 MIS int DEFAULT 0,
 MNT int DEFAULT 0,
 OBS int DEFAULT 0,
 OPS int DEFAULT 0,
 PHY int DEFAULT 0,
 PRB int DEFAULT 0,
 PRO int DEFAULT 0,
 RES int DEFAULT 0,
 ROU int DEFAULT 0,
 SKL int DEFAULT 0,
 TRG int DEFAULT 0,
 UNA int DEFAULT 0,
 UNK int DEFAULT 0,
 WXE int DEFAULT 0
)
CREATE TABLE #nResult2 (
 Class_FK varchar(255),
 CRW int DEFAULT 0,
 ENV int DEFAULT 0,
 EQP int DEFAULT 0,
 ERR int DEFAULT 0,
 MED int DEFAULT 0,
 ORG int DEFAULT 0,
 RDY int DEFAULT 0,
 SUP int DEFAULT 0,
 UNK int DEFAULT 0,
 VIO int DEFAULT 0,
 WRK int DEFAULT 0
)
CREATE TABLE #nResult1 (
 Class_FK varchar(255),
 MA int DEFAULT 0,
 MC int DEFAULT 0,
 MG int DEFAULT 0,
 UN int DEFAULT 0,
 WC int DEFAULT 0

)
CREATE TABLE #nResultFinal (
 Class_FK varchar(255),
 ADA int DEFAULT 0,
 ASS int DEFAULT 0,
 ATT int DEFAULT 0,
 COM int DEFAULT 0,
 CON int DEFAULT 0,
 CRT int DEFAULT 0,
 DES int DEFAULT 0,
 DMG int DEFAULT 0,
 DOC int DEFAULT 0,
 DUC int DEFAULT 0,
 EHZ int DEFAULT 0,
 EXC int DEFAULT 0,
 FLG int DEFAULT 0,
 IDQ int DEFAULT 0,
 IFC int DEFAULT 0,
 INA int DEFAULT 0,
 INF int DEFAULT 0,
 JDG int DEFAULT 0,
 KNW int DEFAULT 0,
 LIM int DEFAULT 0,
 LGT int DEFAULT 0,
 MIS int DEFAULT 0,
 MNT int DEFAULT 0,
 OBS int DEFAULT 0,
 OPS int DEFAULT 0,
 PHY int DEFAULT 0,
 PRB int DEFAULT 0,
 PRO int DEFAULT 0,
 RES int DEFAULT 0,
 ROU int DEFAULT 0,
 SKL int DEFAULT 0,
 TRG int DEFAULT 0,
 UNA int DEFAULT 0,
 WXE int DEFAULT 0,
 CRW int DEFAULT 0,
 WRK int DEFAULT 0,
 ENV int DEFAULT 0,
 EQP int DEFAULT 0,
 ERR int DEFAULT 0,
 MED int DEFAULT 0,
 ORG int DEFAULT 0,
 RDY int DEFAULT 0,
 SUP int DEFAULT 0,
 VIO int DEFAULT 0,
 MA int DEFAULT 0,
 MC int DEFAULT 0,
 MG int DEFAULT 0,
 WC int DEFAULT 0
)
--
----------------------------------FOR THIRD LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [3rdLevelCode], Class_FK INTO
#nTemp3
FROM [vwFlanReports-2-4-Class3]

UPDATE #nTemp3
SET Class_FK = 'None'
WHERE Class_FK is null
--Now run the crosstab
 INSERT #nResult3

 393

 EXEC dbo.rac @grpcol='Class_FK',
@pvtcol='[3rdLevelCode]', @transform='count(*)', @from
='#nTemp3', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'

------------------------------ FOR SECOND LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [2ndLevelCode], Class_FK INTO
#nTemp2
FROM [vwFlanReports-2-4-Class2]

UPDATE #nTemp2
SET Class_FK = 'None'
WHERE Class_FK is null
--Now run the crosstab
 INSERT #nResult2
 EXEC dbo.rac @grpcol='Class_FK',
@pvtcol='[2ndLevelCode]', @transform='count(*)', @from
='#nTemp2', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'

-----------------------------------FOR FIRST LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [1stLevelCode], Class_FK INTO
#nTemp1
FROM [vwFlanReports-2-4-Class1]

UPDATE #nTemp1
SET Class_FK = 'None'
WHERE Class_FK is null
--Now run the crosstab
 INSERT #nResult1
 EXEC dbo.rac @grpcol='Class_FK',
@pvtcol='[1stLevelCode]', @transform='count(*)', @from
='#nTemp1', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'
--

 INSERT #nResultFinal
 SELECT dbo.#nResult3.Class_FK,
dbo.#nResult3.ADA, dbo.#nResult3.ASS,
dbo.#nResult3.ATT, dbo.#nResult3.COM,
dbo.#nResult3.CON, dbo.#nResult3.CRT,
dbo.#nResult3.DES,
 dbo.#nResult3.DMG,
dbo.#nResult3.DOC, dbo.#nResult3.DUC,
dbo.#nResult3.EHZ, dbo.#nResult3.EXC,
dbo.#nResult3.FLG, dbo.#nResult3.IDQ, dbo.#nResult3.IFC,
dbo.#nResult3.INA, dbo.#nResult3.INF,
 dbo.#nResult3.JDG,
dbo.#nResult3.KNW, dbo.#nResult3.LIM,
dbo.#nResult3.LGT, dbo.#nResult3.MIS,
dbo.#nResult3.MNT, dbo.#nResult3.OBS,
 dbo.#nResult3.OPS,
dbo.#nResult3.PHY, dbo.#nResult3.PRB,
dbo.#nResult3.PRO, dbo.#nResult3.RES,
dbo.#nResult3.ROU, dbo.#nResult3.SKL,
 dbo.#nResult3.TRG,
dbo.#nResult3.UNA, dbo.#nResult3.WXE,
dbo.#nResult2.CRW, dbo.#nResult2.WRK,
dbo.#nResult2.ENV, dbo.#nResult2.EQP,
dbo.#nResult2.ERR,

 dbo.#nResult2.MED,
dbo.#nResult2.ORG, dbo.#nResult2.RDY,
dbo.#nResult2.SUP, dbo.#nResult2.VIO, dbo.#nResult1.MA,
dbo.#nResult1.MC,
 dbo.#nResult1.MG,
dbo.#nResult1.WC
 FROM dbo.#nResult3 INNER JOIN
 dbo.#nResult2 ON dbo.#nResult3.Class_FK =
dbo.#nResult2.Class_FK INNER JOIN
 dbo.#nResult1 ON dbo.#nResult3.Class_FK =
dbo.#nResult1.Class_FK

 SELECT tblMishaps.Class_FK,
Count(tblMishaps.MishapID) AS TotalMishaps INTO
#nResultTotal
 FROM dbo.tblMishaps
 GROUP BY tblMishaps.Class_FK

 SELECT dbo.#nResultFinal.Class_FK,
dbo.#nResultFinal.ADA, dbo.#nResultFinal.ASS,
dbo.#nResultFinal.ATT, dbo.#nResultFinal.COM,
dbo.#nResultFinal.CON, dbo.#nResultFinal.CRT,
dbo.#nResultFinal.DES,
 dbo.#nResultFinal.DMG,
dbo.#nResultFinal.DOC, dbo.#nResultFinal.DUC,
dbo.#nResultFinal.EHZ, dbo.#nResultFinal.EXC,
dbo.#nResultFinal.FLG, dbo.#nResultFinal.IDQ,
dbo.#nResultFinal.IFC, dbo.#nResultFinal.INA,
dbo.#nResultFinal.INF,
 dbo.#nResultFinal.JDG,
dbo.#nResultFinal.KNW, dbo.#nResultFinal.LIM,
dbo.#nResultFinal.LGT, dbo.#nResultFinal.MIS,
dbo.#nResultFinal.MNT, dbo.#nResultFinal.OBS,
 dbo.#nResultFinal.OPS,
dbo.#nResultFinal.PHY, dbo.#nResultFinal.PRB,
dbo.#nResultFinal.PRO, dbo.#nResultFinal.RES,
dbo.#nResultFinal.ROU, dbo.#nResultFinal.SKL,
 dbo.#nResultFinal.TRG,
dbo.#nResultFinal.UNA, dbo.#nResultFinal.WXE,
dbo.#nResultFinal.CRW, dbo.#nResultFinal.WRK,
dbo.#nResultFinal.ENV, dbo.#nResultFinal.EQP,
dbo.#nResultFinal.ERR,
 dbo.#nResultFinal.MED,
dbo.#nResultFinal.ORG, dbo.#nResultFinal.RDY,
dbo.#nResultFinal.SUP, dbo.#nResultFinal.VIO,
dbo.#nResultFinal.MA, dbo.#nResultFinal.MC,
 dbo.#nResultFinal.MG,
dbo.#nResultFinal.WC,
 dbo.#nResultTotal.TotalMishaps
 FROM dbo.#nResultFinal INNER JOIN
 dbo.#nResultTotal ON
dbl.#nResultFinal.Class_FK=dbo.#nResultTotal.Class_FK

 DROP TABLE #nResultFinal
 DROP TABLE #nResultTotal
 DROP TABLE #nResult3
 DROP TABLE #nResult2
 DROP TABLE #nResult1

return

 394

8-0-0-4-NelsonReportByOrganziation

Alter Procedure [8-0-0-4-NelsonReportByOrganization]

As

SET NOCOUNT ON

CREATE TABLE #nResult3 (
 OrgID_FK varchar(255),
 ADA int DEFAULT 0,
 ASS int DEFAULT 0,
 ATT int DEFAULT 0,
 COM int DEFAULT 0,
 CON int DEFAULT 0,
 CRT int DEFAULT 0,
 DES int DEFAULT 0,
 DMG int DEFAULT 0,
 DOC int DEFAULT 0,
 DUC int DEFAULT 0,
 EHZ int DEFAULT 0,
 EXC int DEFAULT 0,
 FLG int DEFAULT 0,
 IDQ int DEFAULT 0,
 IFC int DEFAULT 0,
 INA int DEFAULT 0,
 INF int DEFAULT 0,
 JDG int DEFAULT 0,
 KNW int DEFAULT 0,
 LGT int DEFAULT 0,
 LIM int DEFAULT 0,
 MIS int DEFAULT 0,
 MNT int DEFAULT 0,
 OBS int DEFAULT 0,
 OPS int DEFAULT 0,
 PHY int DEFAULT 0,
 PRB int DEFAULT 0,
 PRO int DEFAULT 0,
 RES int DEFAULT 0,
 ROU int DEFAULT 0,
 SKL int DEFAULT 0,
 TRG int DEFAULT 0,
 UNA int DEFAULT 0,
 UNK int DEFAULT 0,
 WXE int DEFAULT 0
)
CREATE TABLE #nResult2 (
 OrgID_FK varchar(255),
 CRW int DEFAULT 0,
 ENV int DEFAULT 0,
 EQP int DEFAULT 0,
 ERR int DEFAULT 0,
 MED int DEFAULT 0,
 ORG int DEFAULT 0,
 RDY int DEFAULT 0,
 SUP int DEFAULT 0,
 UNK int DEFAULT 0,
 VIO int DEFAULT 0,
 WRK int DEFAULT 0
)
CREATE TABLE #nResult1 (
 OrgID_FK varchar(255),
 MA int DEFAULT 0,
 MC int DEFAULT 0,
 MG int DEFAULT 0,
 UN int DEFAULT 0,
 WC int DEFAULT 0

)
CREATE TABLE #nResultFinal (
 OrgID_FK varchar(255),
 ADA int DEFAULT 0,
 ASS int DEFAULT 0,
 ATT int DEFAULT 0,
 COM int DEFAULT 0,
 CON int DEFAULT 0,
 CRT int DEFAULT 0,
 DES int DEFAULT 0,
 DMG int DEFAULT 0,
 DOC int DEFAULT 0,
 DUC int DEFAULT 0,
 EHZ int DEFAULT 0,
 EXC int DEFAULT 0,
 FLG int DEFAULT 0,
 IDQ int DEFAULT 0,
 IFC int DEFAULT 0,
 INA int DEFAULT 0,
 INF int DEFAULT 0,
 JDG int DEFAULT 0,
 KNW int DEFAULT 0,
 LIM int DEFAULT 0,
 LGT int DEFAULT 0,
 MIS int DEFAULT 0,
 MNT int DEFAULT 0,
 OBS int DEFAULT 0,
 OPS int DEFAULT 0,
 PHY int DEFAULT 0,
 PRB int DEFAULT 0,
 PRO int DEFAULT 0,
 RES int DEFAULT 0,
 ROU int DEFAULT 0,
 SKL int DEFAULT 0,
 TRG int DEFAULT 0,
 UNA int DEFAULT 0,
 WXE int DEFAULT 0,
 CRW int DEFAULT 0,
 WRK int DEFAULT 0,
 ENV int DEFAULT 0,
 EQP int DEFAULT 0,
 ERR int DEFAULT 0,
 MED int DEFAULT 0,
 ORG int DEFAULT 0,
 RDY int DEFAULT 0,
 SUP int DEFAULT 0,
 VIO int DEFAULT 0,
 MA int DEFAULT 0,
 MC int DEFAULT 0,
 MG int DEFAULT 0,
 WC int DEFAULT 0
)
--
----------------------------------FOR THIRD LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [3rdLevelCode], OrgID_FK INTO
#nTemp3
FROM [vwFlanReports-2-5-Organization3]

UPDATE #nTemp3
SET OrgID_FK = 'None'
WHERE OrgID_FK is null
--Now run the crosstab
 INSERT #nResult3

 395

 EXEC dbo.rac @grpcol='OrgID_FK ',
@pvtcol='[3rdLevelCode]', @transform='count(*)', @from
='#nTemp3', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'

------------------------------ FOR SECOND LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [2ndLevelCode], OrgID_FK INTO
#nTemp2
FROM [vwFlanReports-2-5-Organization2]

UPDATE #nTemp2
SET OrgID_FK = 'None'
WHERE OrgID_FK is null
--Now run the crosstab
 INSERT #nResult2
 EXEC dbo.rac @grpcol='OrgID_FK ',
@pvtcol='[2ndLevelCode]', @transform='count(*)', @from
='#nTemp2', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'

-----------------------------------FOR FIRST LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [1stLevelCode], OrgID_FK INTO
#nTemp1
FROM [vwFlanReports-2-5-Organization1]

UPDATE #nTemp1
SET OrgID_FK = 'None'
WHERE OrgID_FK is null
--Now run the crosstab
 INSERT #nResult1
 EXEC dbo.rac @grpcol='OrgID_FK ',
@pvtcol='[1stLevelCode]', @transform='count(*)', @from
='#nTemp1', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'
--

 INSERT #nResultFinal
 SELECT dbo.#nResult3.OrgID_FK ,
dbo.#nResult3.ADA, dbo.#nResult3.ASS,
dbo.#nResult3.ATT, dbo.#nResult3.COM,
dbo.#nResult3.CON, dbo.#nResult3.CRT,
dbo.#nResult3.DES,
 dbo.#nResult3.DMG,
dbo.#nResult3.DOC, dbo.#nResult3.DUC,
dbo.#nResult3.EHZ, dbo.#nResult3.EXC,
dbo.#nResult3.FLG, dbo.#nResult3.IDQ, dbo.#nResult3.IFC,
dbo.#nResult3.INA, dbo.#nResult3.INF,
 dbo.#nResult3.JDG,
dbo.#nResult3.KNW, dbo.#nResult3.LIM,
dbo.#nResult3.LGT, dbo.#nResult3.MIS,
dbo.#nResult3.MNT, dbo.#nResult3.OBS,
 dbo.#nResult3.OPS,
dbo.#nResult3.PHY, dbo.#nResult3.PRB,
dbo.#nResult3.PRO, dbo.#nResult3.RES,
dbo.#nResult3.ROU, dbo.#nResult3.SKL,
 dbo.#nResult3.TRG,
dbo.#nResult3.UNA, dbo.#nResult3.WXE,
dbo.#nResult2.CRW, dbo.#nResult2.WRK,
dbo.#nResult2.ENV, dbo.#nResult2.EQP,
dbo.#nResult2.ERR,

 dbo.#nResult2.MED,
dbo.#nResult2.ORG, dbo.#nResult2.RDY,
dbo.#nResult2.SUP, dbo.#nResult2.VIO, dbo.#nResult1.MA,
dbo.#nResult1.MC,
 dbo.#nResult1.MG,
dbo.#nResult1.WC
 FROM dbo.#nResult3 INNER JOIN
 dbo.#nResult2 ON dbo.#nResult3.OrgID_FK
= dbo.#nResult2.OrgID_FK INNER JOIN
 dbo.#nResult1 ON dbo.#nResult3.OrgID_FK
= dbo.#nResult1.OrgID_FK

 SELECT tblMishaps.OrgID_FK ,
Count(tblMishaps.MishapID) AS TotalMishaps INTO
#nResultTotal
 FROM dbo.tblMishaps
 GROUP BY tblMishaps.OrgID_FK

 SELECT dbo.#nResultFinal.OrgID_FK ,
dbo.#nResultFinal.ADA, dbo.#nResultFinal.ASS,
dbo.#nResultFinal.ATT, dbo.#nResultFinal.COM,
dbo.#nResultFinal.CON, dbo.#nResultFinal.CRT,
dbo.#nResultFinal.DES,
 dbo.#nResultFinal.DMG,
dbo.#nResultFinal.DOC, dbo.#nResultFinal.DUC,
dbo.#nResultFinal.EHZ, dbo.#nResultFinal.EXC,
dbo.#nResultFinal.FLG, dbo.#nResultFinal.IDQ,
dbo.#nResultFinal.IFC, dbo.#nResultFinal.INA,
dbo.#nResultFinal.INF,
 dbo.#nResultFinal.JDG,
dbo.#nResultFinal.KNW, dbo.#nResultFinal.LIM,
dbo.#nResultFinal.LGT, dbo.#nResultFinal.MIS,
dbo.#nResultFinal.MNT, dbo.#nResultFinal.OBS,
 dbo.#nResultFinal.OPS,
dbo.#nResultFinal.PHY, dbo.#nResultFinal.PRB,
dbo.#nResultFinal.PRO, dbo.#nResultFinal.RES,
dbo.#nResultFinal.ROU, dbo.#nResultFinal.SKL,
 dbo.#nResultFinal.TRG,
dbo.#nResultFinal.UNA, dbo.#nResultFinal.WXE,
dbo.#nResultFinal.CRW, dbo.#nResultFinal.WRK,
dbo.#nResultFinal.ENV, dbo.#nResultFinal.EQP,
dbo.#nResultFinal.ERR,
 dbo.#nResultFinal.MED,
dbo.#nResultFinal.ORG, dbo.#nResultFinal.RDY,
dbo.#nResultFinal.SUP, dbo.#nResultFinal.VIO,
dbo.#nResultFinal.MA, dbo.#nResultFinal.MC,
 dbo.#nResultFinal.MG,
dbo.#nResultFinal.WC,
 dbo.#nResultTotal.TotalMishaps
 FROM dbo.#nResultFinal INNER JOIN
 dbo.#nResultTotal ON
dbl.#nResult Final.OrgID_FK
=dbo.#nResultTotal.OrgID_FK

 DROP TABLE #nResultFinal
 DROP TABLE #nResultTotal
 DROP TABLE #nResult3
 DROP TABLE #nResult2
 DROP TABLE #nResult1

return

 396

8-0-0-5-NelsonReportByType

Alter Procedure [8-0-0-5-NelsonReportByType]

As

SET NOCOUNT ON

CREATE TABLE #nResult3 (
 Type_FK varchar(255),
 ADA int DEFAULT 0,
 ASS int DEFAULT 0,
 ATT int DEFAULT 0,
 COM int DEFAULT 0,
 CON int DEFAULT 0,
 CRT int DEFAULT 0,
 DES int DEFAULT 0,
 DMG int DEFAULT 0,
 DOC int DEFAULT 0,
 DUC int DEFAULT 0,
 EHZ int DEFAULT 0,
 EXC int DEFAULT 0,
 FLG int DEFAULT 0,
 IDQ int DEFAULT 0,
 IFC int DEFAULT 0,
 INA int DEFAULT 0,
 INF int DEFAULT 0,
 JDG int DEFAULT 0,
 KNW int DEFAULT 0,
 LGT int DEFAULT 0,
 LIM int DEFAULT 0,
 MIS int DEFAULT 0,
 MNT int DEFAULT 0,
 OBS int DEFAULT 0,
 OPS int DEFAULT 0,
 PHY int DEFAULT 0,
 PRB int DEFAULT 0,
 PRO int DEFAULT 0,
 RES int DEFAULT 0,
 ROU int DEFAULT 0,
 SKL int DEFAULT 0,
 TRG int DEFAULT 0,
 UNA int DEFAULT 0,
 UNK int DEFAULT 0,
 WXE int DEFAULT 0
)
CREATE TABLE #nResult2 (
 Type_FK varchar(255),
 CRW int DEFAULT 0,
 ENV int DEFAULT 0,
 EQP int DEFAULT 0,
 ERR int DEFAULT 0,
 MED int DEFAULT 0,
 ORG int DEFAULT 0,
 RDY int DEFAULT 0,
 SUP int DEFAULT 0,
 UNK int DEFAULT 0,
 VIO int DEFAULT 0,
 WRK int DEFAULT 0
)
CREATE TABLE #nResult1 (
 Type_FK varchar(255),
 MA int DEFAULT 0,
 MC int DEFAULT 0,
 MG int DEFAULT 0,
 UN int DEFAULT 0,
 WC int DEFAULT 0

)
CREATE TABLE #nResultFinal (
 Type_FK varchar(255),
 ADA int DEFAULT 0,
 ASS int DEFAULT 0,
 ATT int DEFAULT 0,
 COM int DEFAULT 0,
 CON int DEFAULT 0,
 CRT int DEFAULT 0,
 DES int DEFAULT 0,
 DMG int DEFAULT 0,
 DOC int DEFAULT 0,
 DUC int DEFAULT 0,
 EHZ int DEFAULT 0,
 EXC int DEFAULT 0,
 FLG int DEFAULT 0,
 IDQ int DEFAULT 0,
 IFC int DEFAULT 0,
 INA int DEFAULT 0,
 INF int DEFAULT 0,
 JDG int DEFAULT 0,
 KNW int DEFAULT 0,
 LIM int DEFAULT 0,
 LGT int DEFAULT 0,
 MIS int DEFAULT 0,
 MNT int DEFAULT 0,
 OBS int DEFAULT 0,
 OPS int DEFAULT 0,
 PHY int DEFAULT 0,
 PRB int DEFAULT 0,
 PRO int DEFAULT 0,
 RES int DEFAULT 0,
 ROU int DEFAULT 0,
 SKL int DEFAULT 0,
 TRG int DEFAULT 0,
 UNA int DEFAULT 0,
 WXE int DEFAULT 0,
 CRW int DEFAULT 0,
 WRK int DEFAULT 0,
 ENV int DEFAULT 0,
 EQP int DEFAULT 0,
 ERR int DEFAULT 0,
 MED int DEFAULT 0,
 ORG int DEFAULT 0,
 RDY int DEFAULT 0,
 SUP int DEFAULT 0,
 VIO int DEFAULT 0,
 MA int DEFAULT 0,
 MC int DEFAULT 0,
 MG int DEFAULT 0,
 WC int DEFAULT 0
)
--
----------------------------------FOR THIRD LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [3rdLevelCode], Type_FK INTO
#nTemp3
FROM [vwFlanReports-2-6-Type3]

UPDATE #nTemp3
SET Type_FK = 'None'
WHERE Type_FK is null
--Now run the crosstab
 INSERT #nResult3

 397

 EXEC dbo.rac @grpcol='Type_FK ',
@pvtcol='[3rdLevelCode]', @transform='count(*)', @from
='#nTemp3', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'

------------------------------ FOR SECOND LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [2ndLevelCode], Type_FK INTO
#nTemp2
FROM [vwFlanReports-2-6-Type2]

UPDATE #nTemp2
SET Type_FK = 'None'
WHERE Type_FK is null
--Now run the crosstab
 INSERT #nResult2
 EXEC dbo.rac @grpcol='Type_FK ',
@pvtcol='[2ndLevelCode]', @transform='count(*)', @from
='#nTemp2', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'

-----------------------------------FOR FIRST LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [1stLevelCode], Type_FK INTO
#nTemp1
FROM [vwFlanReports-2-6-Type1]

UPDATE #nTemp1
SET Type_FK = 'None'
WHERE Type_FK is null
--Now run the crosstab
 INSERT #nResult1
 EXEC dbo.rac @grpcol='Type_FK ',
@pvtcol='[1stLevelCode]', @transform='count(*)', @from
='#nTemp1', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'
--

 INSERT #nResult Final
 SELECT dbo.#nResult3.Type_FK ,
dbo.#nResult3.ADA, dbo.#nResult3.ASS,
dbo.#nResult3.ATT, dbo.#nResult3.COM,
dbo.#nResult3.CON, dbo.#nResult3.CRT,
dbo.#nResult3.DES,
 dbo.#nResult3.DMG,
dbo.#nResult3.DOC, dbo.#nResult3.DUC,
dbo.#nResult3.EHZ, dbo.#nResult3.EXC,
dbo.#nResult3.FLG, dbo.#nResult3.IDQ, dbo.#nResult3.IFC,
dbo.#nResult3.INA, dbo.#nResult3.INF,
 dbo.#nResult3.JDG,
dbo.#nResult3.KNW, dbo.#nResult3.LIM,
dbo.#nResult3.LGT, dbo.#nResult3.MIS,
dbo.#nResult3.MNT, dbo.#nResult3.OBS,
 dbo.#nResult3.OPS,
dbo.#nResult3.PHY, dbo.#nResult3.PRB,
dbo.#nResult3.PRO, dbo.#nResult3.RES,
dbo.#nResult3.ROU, dbo.#nResult3.SKL,
 dbo.#nResult3.TRG,
dbo.#nResult3.UNA, dbo.#nResult3.WXE,
dbo.#nResult2.CRW, dbo.#nResult2.WRK,
dbo.#nResult2.ENV, dbo.#nResult2.EQP,
dbo.#nResult2.ERR,
 dbo.#nResult2.MED,
dbo.#nResult2.ORG, dbo.#nResult2.RDY,

dbo.#nResult2.SUP, dbo.#nResult2.VIO, dbo.#nResult1.MA,
dbo.#nResult1.MC,
 dbo.#nResult1.MG,
dbo.#nResult1.WC
 FROM dbo.#nResult3 INNER JOIN
 dbo.#nResult2 ON dbo.#nResult3.Type_FK =
dbo.#nResult2.Type_FK INNER JOIN
 dbo.#nResult1 ON dbo.#nResult3.Type_FK =
dbo.#nResult1.Type_FK

 SELECT tblMishaps.Type_FK ,
Count(tblMishaps.MishapID) AS TotalMishaps INTO
#nResultTotal
 FROM dbo.tblMishaps
 GROUP BY tblMishaps.Type_FK

 SELECT dbo.#nResultFinal.Type_FK ,
dbo.#nResultFinal.ADA, dbo.#nResultFinal.ASS,
dbo.#nResultFinal.ATT, dbo.#nResultFinal.COM,
dbo.#nResultFinal.CON, dbo.#nResultFinal.CRT,
dbo.#nResultFinal.DES,
 dbo.#nResultFinal.DMG,
dbo.#nResultFinal.DOC, dbo.#nResultFinal.DUC,
dbo.#nResultFinal.EHZ, dbo.#nResultFinal.EXC,
dbo.#nResultFinal.FLG, dbo.#nResultFinal.IDQ,
dbo.#nResultFinal.IFC, dbo.#nResultFinal.INA,
dbo.#nResultFinal.INF,
 dbo.#nResultFinal.JDG,
dbo.#nResultFinal.KNW, dbo.#nResultFinal.LIM,
dbo.#nResultFinal.LGT, dbo.#nResultFinal.MIS,
dbo.#nResultFinal.MNT, dbo.#nResultFinal.OBS,
 dbo.#nResultFinal.OPS,
dbo.#nResultFinal.PHY, dbo.#nResultFinal.PRB,
dbo.#nResultFinal.PRO, dbo.#nResultFinal.RES,
dbo.#nResultFinal.ROU, dbo.#nResultFinal.SKL,
 dbo.#nResultFinal.TRG,
dbo.#nResultFinal.UNA, dbo.#nResultFinal.WXE,
dbo.#nResultFinal.CRW, dbo.#nResultFinal.WRK,
dbo.#nResultFinal.ENV, dbo.#nResultFinal.EQP,
dbo.#nResultFinal.ERR,
 dbo.#nResultFinal.MED,
dbo.#nResultFinal.ORG, dbo.#nResultFinal.RDY,
dbo.#nResultFinal.SUP, dbo.#nResultFinal.VIO,
dbo.#nResultFinal.MA, dbo.#nResultFinal.MC,
 dbo.#nResultFinal.MG,
dbo.#nResultFinal.WC,
 dbo.#nResultTotal.TotalMishaps,
dbo.tblMishapType.MishapTypeDefinition
 FROM dbo.#nResultFinal INNER JOIN
 dbo.#nResultTotal ON
dbl.#nResultFinal.Type_FK =dbo.#nResultTotal.Type_FK
INNER JOIN
 dbo.tblMishapType ON
dbo.#nResultFinal.Type_FK =
dbo.tblMishapType.MishapTypeCode

 DROP TABLE #nResultFinal
 DROP TABLE #nResultTotal
 DROP TABLE #nResult3
 DROP TABLE #nResult2
 DROP TABLE #nResult1

return

 398

8-0-0-6-NelsonReportByYear

Alter Procedure [8-0-0-6-NelsonReportByYear]

As

SET NOCOUNT ON

CREATE TABLE #nResult3 (
 Year int ,
 ADA int DEFAULT 0,
 ASS int DEFAULT 0,
 ATT int DEFAULT 0,
 COM int DEFAULT 0,
 CON int DEFAULT 0,
 CRT int DEFAULT 0,
 DES int DEFAULT 0,
 DMG int DEFAULT 0,
 DOC int DEFAULT 0,
 DUC int DEFAULT 0,
 EHZ int DEFAULT 0,
 EXC int DEFAULT 0,
 FLG int DEFAULT 0,
 IDQ int DEFAULT 0,
 IFC int DEFAULT 0,
 INA int DEFAULT 0,
 INF int DEFAULT 0,
 JDG int DEFAULT 0,
 KNW int DEFAULT 0,
 LGT int DEFAULT 0,
 LIM int DEFAULT 0,
 MIS int DEFAULT 0,
 MNT int DEFAULT 0,
 OBS int DEFAULT 0,
 OPS int DEFAULT 0,
 PHY int DEFAULT 0,
 PRB int DEFAULT 0,
 PRO int DEFAULT 0,
 RES int DEFAULT 0,
 ROU int DEFAULT 0,
 SKL int DEFAULT 0,
 TRG int DEFAULT 0,
 UNA int DEFAULT 0,
 UNK int DEFAULT 0,
 WXE int DEFAULT 0
)
CREATE TABLE #nResult2 (
 Year int ,
 CRW int DEFAULT 0,
 ENV int DEFAULT 0,
 EQP int DEFAULT 0,
 ERR int DEFAULT 0,
 MED int DEFAULT 0,
 ORG int DEFAULT 0,
 RDY int DEFAULT 0,
 SUP int DEFAULT 0,
 UNK int DEFAULT 0,
 VIO int DEFAULT 0,
 WRK int DEFAULT 0
)
CREATE TABLE #nResult1 (
 Year int,
 MA int DEFAULT 0,
 MC int DEFAULT 0,
 MG int DEFAULT 0,
 UN int DEFAULT 0,
 WC int DEFAULT 0

)
CREATE TABLE #nResultFinal (
 Year int ,
 ADA int DEFAULT 0,
 ASS int DEFAULT 0,
 ATT int DEFAULT 0,
 COM int DEFAULT 0,
 CON int DEFAULT 0,
 CRT int DEFAULT 0,
 DES int DEFAULT 0,
 DMG int DEFAULT 0,
 DOC int DEFAULT 0,
 DUC int DEFAULT 0,
 EHZ int DEFAULT 0,
 EXC int DEFAULT 0,
 FLG int DEFAULT 0,
 IDQ int DEFAULT 0,
 IFC int DEFAULT 0,
 INA int DEFAULT 0,
 INF int DEFAULT 0,
 JDG int DEFAULT 0,
 KNW int DEFAULT 0,
 LIM int DEFAULT 0,
 LGT int DEFAULT 0,
 MIS int DEFAULT 0,
 MNT int DEFAULT 0,
 OBS int DEFAULT 0,
 OPS int DEFAULT 0,
 PHY int DEFAULT 0,
 PRB int DEFAULT 0,
 PRO int DEFAULT 0,
 RES int DEFAULT 0,
 ROU int DEFAULT 0,
 SKL int DEFAULT 0,
 TRG int DEFAULT 0,
 UNA int DEFAULT 0,
 WXE int DEFAULT 0,
 CRW int DEFAULT 0,
 WRK int DEFAULT 0,
 ENV int DEFAULT 0,
 EQP int DEFAULT 0,
 ERR int DEFAULT 0,
 MED int DEFAULT 0,
 ORG int DEFAULT 0,
 RDY int DEFAULT 0,
 SUP int DEFAULT 0,
 VIO int DEFAULT 0,
 MA int DEFAULT 0,
 MC int DEFAULT 0,
 MG int DEFAULT 0,
 WC int DEFAULT 0
)
--
----------------------------------FOR THIRD LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [3rdLevelCode], Year INTO
#nTemp3
FROM [vwFlanReports-2-7-Year3]

UPDATE #nT emp3
SET Year = '0'
WHERE Year is null
--Now run the crosstab
 INSERT #nResult3

 399

 EXEC dbo.rac @grpcol='Year',
@pvtcol='[3rdLevelCode]', @transform='count(*)', @from
='#nTemp3', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'

------------------------------ FOR SECOND LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [2ndLevelCode], Year INTO
#nTemp2
FROM [vwFlanReports-2-7-Year2]

UPDATE #nTemp2
SET Year = '0'
WHERE Year is null
--Now run the crosstab
 INSERT #nResult2
 EXEC dbo.rac @grpcol='Year',
@pvtcol='[2ndLevelCode]', @transform='count(*)', @from
='#nTemp2', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'

-----------------------------------FOR FIRST LEVEL FACTORS
--Build a temp table and update the null values to 'None"
SELECT MishapID, [1stLevelCode], Year INTO
#nTemp1
FROM [vwFlanReports-2-7-Year1]

UPDATE #nTemp1
SET Year = '0'
WHERE Year is null
--Now run the crosstab
 INSERT #nResult1
 EXEC dbo.rac @grpcol='Year',
@pvtcol='[1stLevelCode]', @transform='count(*)', @from
='#nTemp1', @where='',
 @printagg='n',@grand_totals='n',
@row_totals='n', @emptycell='0'
--

 INSERT #nResultFinal
 SELECT dbo.#nResult3.Year,
dbo.#nResult3.ADA, dbo.#nResult3.ASS,
dbo.#nResult3.ATT, dbo.#nResult3.COM,
dbo.#nResult3.CON, dbo.#nResult3.CRT,
dbo.#nResult3.DES,
 dbo.#nResult3.DMG,
dbo.#nResult3.DOC, dbo.#nResult3.DUC,
dbo.#nResult3.EHZ, dbo.#nResult3.EXC,
dbo.#nResult3.FLG, dbo.#nResult3.IDQ, dbo.#nResult3.IFC,
dbo.#nResult3.INA, dbo.#nResult3.INF,
 dbo.#nResult3.JDG,
dbo.#nResult3.KNW, dbo.#nResult3.LIM,
dbo.#nResult3.LGT, dbo.#nResult3.MIS,
dbo.#nResult3.MNT, dbo.#nResult3.OBS,
 dbo.#nResult3.OPS,
dbo.#nResult3.PHY, dbo.#nResult3.PRB,
dbo.#nResult3.PRO, dbo.#nResult3.RES,
dbo.#nResult3.ROU, dbo.#nResult3.SKL,
 dbo.#nResult3.TRG,
dbo.#nResult3.UNA, dbo.#nResult3.WXE,
dbo.#nResult2.CRW, dbo.#nResult2.WRK,
dbo.#nResult2.ENV, dbo.#nResult2.EQP,
dbo.#nResult2.ERR,

 dbo.#nResult2.MED,
dbo.#nResult2.ORG, dbo.#nResult2.RDY,
dbo.#nResult2.SUP, dbo.#nResult2.VIO, dbo.#nResult1.MA,
dbo.#nResult1.MC,
 dbo.#nResult1.MG,
dbo.#nResult1.WC
 FROM dbo.#nResult3 INNER JOIN
 dbo.#nResult2 ON dbo.#nResult3.Year =
dbo.#nResult2.Year INNER JOIN
 dbo.#nResult1 ON dbo.#nResult3.Year =
dbo.#nResult1.Year

 SELECT #nTemp3.Year, Count(Distinct
#nTemp3.MishapID) AS TotalMishaps INTO #nResultTotal
 From #nTemp3
 Group By #nTemp3.Year

 SELECT dbo.#nResultFinal.Year ,
dbo.#nResultFinal.ADA, dbo.#nResultFinal.ASS,
dbo.#nResultFinal.ATT, dbo.#nResultFinal.COM,
dbo.#nResultFinal.CON, dbo.#nResultFinal.CRT,
dbo.#nResultFinal.DES,
 dbo.#nResultFinal.DMG,
dbo.#nResultFinal.DOC, dbo.#nResultFinal.DUC,
dbo.#nResultFinal.EHZ, dbo.#nResultFinal.EXC,
dbo.#nResultFinal.FLG, dbo.#nResultFinal.IDQ,
dbo.#nResultFinal.IFC, dbo.#nResultFinal.INA,
dbo.#nResultFinal.INF,
 dbo.#nResultFinal.JDG,
dbo.#nResultFinal.KNW, dbo.#nResultFinal.LIM,
dbo.#nResultFinal.LGT, dbo.#nResultFinal.MIS,
dbo.#nResultFinal.MNT, dbo.#nResultFinal.OBS,
 dbo.#nResultFinal.OPS,
dbo.#nResultFinal.P HY, dbo.#nResultFinal.PRB,
dbo.#nResultFinal.PRO, dbo.#nResultFinal.RES,
dbo.#nResultFinal.ROU, dbo.#nResultFinal.SKL,
 dbo.#nResultFinal.TRG,
dbo.#nResultFinal.UNA, dbo.#nResultFinal.WXE,
dbo.#nResultFinal.CRW, dbo.#nResultFinal.WRK,
dbo.#nResultFinal.ENV, dbo.#nResultFinal.EQP,
dbo.#nResultFinal.ERR,
 dbo.#nResultFinal.MED,
dbo.#nResultFinal.ORG, dbo.#nResultFinal.RDY,
dbo.#nResultFinal.SUP, dbo.#nResultFinal.VIO,
dbo.#nResultFinal.MA, dbo.#nResultFinal.MC,
 dbo.#nResultFinal.MG,
dbo.#nResultFinal.WC,
 dbo.#nResultTotal.TotalMishaps
 FROM dbo.#nResultFinal INNER JOIN
 dbo.#nResultTotal ON
dbl.#nResultFinal.Year = dbo.#nResultTotal.Year

 DROP TABLE #nResultFinal
 DROP TABLE #nResultTotal
 DROP TABLE #nResult3
 DROP TABLE #nResult2
 DROP TABLE #nResult1

return

 400

8-0-0-9-NelsonCronoMishaps

Alter Procedure [8-0-0-9-NelsonCronoMishaps]

As

SELECT tblMishaps.MishapDate, tblMishaps.Aircraft_FK, tblMishaps.Class_FK,
tblMishaps.Type_FK, tblMishaps.OrgID_FK, tblMishaps.ShortDescription

FROM tblMishaps
ORDER BY tblMishaps.MishapDate

return

 401

9-0-0-1-LookupsWithoutALL

Alter Procedure [9-0-0-1-flanLookupAircraft]

As
set nocount on

SELECT *FROM dbo.tblAircraft
ORDER BY AircraftTypeModel

Return

Alter Procedure [9-0-0-1-flanLookupClass]

As
set nocount on

SELECT *FROM dbo.tblMishapClass
ORDER BY MishapClassCode

Return

Alter Procedure [9-0-0-1-flanLookupDBType]

As
set nocount on

SELECT DatabaseType
FROM dbo.tblDatabaseType
WHERE DatabaseType <> 'O'

Return

Alter Procedure [9-0-0-1-flanLookupFactors]

As
set nocount on

SELECT *FROM dbo.tblFactors
ORDER BY [3rdLevelDesc]

Return

Alter Procedure [9-0-0-1-flanLookupLocation]
(
 @DatabaseType varchar(1) = "M"
)

As

set nocount on

SELECT dbo.tblMishapLocation.MishapLocationID,
 dbo.tblMishapLocation.MishapLocation

FROM dbo.tblDatabaseType INNER JOIN
dbo.tblMishapLocation ON
dbo.tblDatabaseType.DatabaseType =
dbo.tblMishapLocation.DatabaseType

WHERE
dbo.tblMishapLocation.DatabaseType=dbo.tblDatabaseType.
DatabaseType

ORDER BY dbo.tblMishapLocation.MishapLocation

return

Alter Procedure [9-0-0-1-flanLookupOrganization]

As
set nocount on

SELECT dbo.tblOrganization.OrgID,
 dbo.tblOrganization.OrgName

FROM dbo.tblOrganization INNER JOIN
dbo.tblDatabaseType ON dbo.tblOrganization.DatabaseType
= dbo.tblDatabaseType.DatabaseType

WHERE
dbo.tblOrganization.DatabaseType=dbo.tblDatabaseType.Da
tabaseType

ORDER BY OrgID

return

Alter Procedure [9-0-0-1-flanLookupType]

As
set nocount on

SELECT *FROM dbo.tblMishapType
ORDER BY MishapTypeCode

Return

 402

9-0-0-2-LookupsWithALL

Alter Procedure [9-0-0-2-flanLookupAircraftAll]

As
set nocount on

SELECT AircraftTypeModel, AircraftCategory,
AircraftDescription FROM dbo.tblAircraft

UNION

Select '<All>' as AllChoice, '<All>' as AllChoice2, '<All>' as
AllChoice3 FROM tblAircraft

ORDER BY AircraftTypeModel

return

Alter Procedure [9-0-0-2-flanLookupClassAll]

As
set nocount on

SELECT MishapClassCode, MishapClassDefinition FROM
dbo.tblMishapClass

UNION

Select '<All>' as AllChoice, '<All>' as AllChoice2 FROM
dbo.tblMishapClass

ORDER BY MishapClassCode

Return

Alter Procedure [9-0-0-2-flanLookupFactorsAll1Level]

As
set nocount on

SELECT DISTINCT [1stLevelCode], [1stLevelDesc]
FROM dbo.tblFactors

UNION

Select '<All>' as AllChoice, '<All>' as AllChoice2 FROM
dbo.tblFactors

ORDER BY [1stLevelDesc]

return

Alter Procedure [9-0-0-2-flanLookupFactorsAll2Level]

As
set nocount on

SELECT DISTINCT [2ndLevelCode], [2ndLevelDesc]
FROM dbo.tblFactors

UNION

Select '<All>' as AllChoice, '<All>' as AllChoice2 FROM
dbo.tblFactors

ORDER BY [2ndLevelDesc]

Return

Alter Procedure [9-0-0-2-flanLookupFactorsAll3Level]

As
set nocount on

SELECT DISTINCT [3rdLevelCode], [3rdLevelDesc]
FROM dbo.tblFactors

UNION

Select '<All>' as AllChoice, '<All>' as AllChoice2 FROM
dbo.tblFactors

ORDER BY [3rdLevelDesc]

Return

Alter Procedure [9-0-0-2-flanLookupLocationAll]
(
 @DatabaseType varchar(1) = "M"
)

As
set nocount on

SELECT dbo.tblMishapLocation.MishapLocationID,
 dbo.tblMishapLocation.MishapLocation

FROM dbo.tblMishapLocation INNER JOIN
dbo.tblDatabaseType ON
dbo.tblMishapLocation.DatabaseType =
dbo.tblDatabaseType.DatabaseType

WHERE
dbo.tblMishapLocation.DatabaseType=dbo.tblDatabaseType.
DatabaseType

UNION

Select '<All>' as AllChoice, '<All>' as AllChoice2 FROM
dbo.tblMishapLocation

ORDER BY dbo.tblMishapLocation.MishapLocation

Return

Alter Procedure [9-0-0-2-flanLookupOrganizationAll]

As
set nocount on

SELECT dbo.tblOrganization.OrgID,
 dbo.tblOrganization.OrgName

 403

FROM dbo.tblOrganization INNER JOIN
dbo.tblDatabaseType ON dbo.tblOrganization.DatabaseType
= dbo.tblDatabaseType.DatabaseType

WHERE
dbo.tblOrganization.DatabaseType=dbo.tblDatabaseType.Da
tabaseType

UNION

Select '<All>' as AllChoice, '<All>' as AllChoice2 FROM
dbo.tblOrganization

ORDER BY OrgID

return

Alter Procedure [9-0-0-2-flanLookupTypeAll]

As
set nocount on

SELECT MishapTypeCode, MishapTypeDefinition FROM
dbo.tblMishapType

UNION

Select '<All>' as AllChoice, '<All>' as AllChoice2 FROM
dbo.tblMishapType

ORDER BY MishapTypeCode

return

Alter Procedure [9-0-0-2-flanModifiedLookupYear]

As
set nocount on

SELECT DISTINCT
DatePart("yyyy",[tblMishaps].[MishapDate]) AS Expr1
FROM dbo.tblMishaps;

return

 404

RAC

RAC is an application that runs on SQL Server and produces 2 dimensional cross-

tab reports. It was designed by Steve Dassin and was included in HFACS with his

permission [Ref. 31].

RAC has various options that make it possible to enhance the traditional Access-

JET cross-tab functionality by providing additional capabilities over those in Access.

RAC has a number of report like format capabilities that enhance the appearance of table

data. In addition to producing cross-tab reports, RAC can be used to transpose fields,

split delimited strings and create delimited strings. RAC is written in transact-SQL

exclusively for SQL Server version 7.0 and above. A set oriented approach is employed

in most places and RAC does NOT use any cursors.

 405

LIST OF REFERENCES

1. Schmidt, J. & Lawson, D., Aviation Maintenance Human Factors Accident
Analysis. Power Point Presentation. Adapted form Reason’s Swiss Cheese
Model. Monterey, CA: School of Aviation Safety, 2000.

2. Wood, B. P., Information Management System development for the

Characterization and Analysis of Human Error in Naval Aviation Maintenance
Related Mishaps, 2000.

3. N00S Aviation Safety Home Page, Operational & Risk Management,

http://www.navres.navy.mil/navresfor/navair/safety/av_saftey.html.

4. United States Navy Aviation Safety Center Home Page, Aviation Directorate

HFACS-ME,
http://www.safetycenter.navy.mil/aviation/Presentations/qhfamm6/sld005.htm.

5. Booch, Rumbaugh, & Jacobson M., The Unified Modeling Language User Guide.

Addison Wesley Longman Inc., Reading, MASS, 1997.

6. Kent Beck & Ward Cunningham, OOPSLA'89 Conference Proceedings, October

1-6, New Orleans, Louisiana, 1989.

7. Muller, Robert J., Database Design for Smarties Using UML for Data Modeling.

Morgan, Kaufmann Publishers, San Francisco, CA., 1999.

8. Blackburn, Ian, Professional Access 2000 Programming. Wrox Press Ltd.,

Birmingham, UK, 2000.

9. Doyle, Casey D., Microsoft Office 97 Visual Basic Programmer’s Guide.

Microsoft Press, Redmond, Washington, 1997.

10. Doyle, Casey D., Microsoft Office 97 Resource Kit. Microsoft Press, Redmond,

Washington, 1997.

11. Halvorson, Michael, Step-by-Step Microsoft Visual Basic 6.0. Microsoft Press,

Redmond, Washington, 1998.

12. Prague & Irwin, Microsoft Access 2000 Bible. IDG Books Worldwide, Inc.,

Foster City, CA., 1999.

13. Solomon, Christine, Microsoft Office 97 Developer’s Handbook. Microsoft

Press, Redmond, Washington, 1997.

 406

14. Williams, Charles, Professional Visual Basic 6 Databases, Wrox Press,
Birmingham, UK., 1999.

15. Universal Data Access Web Site, ActiveX Direct Objects,

http://www.microsoft.com/data/ado/default.htm.

16. Microsoft Web Site, Upgrading to Access 2002,

http://www.microsoft.com/Office/ORK/xp/WELCOME/depf05.htm.

17. Microsoft Developer Network Web Site, Upgrading Visual Basic 6.0

Applications To Visual Basic.NET,
http://msdn.microsoft.com/vstudio/nextgen /technology/vbupgrade.asp.

18. Microsoft Developer Network Web Site, Preparing Your Visual Basic 6.0

Applications for the Upgrade to Visual Basic.NET,
http://msdn.microsoft.com/library/default.asp?URL=/library/techart/vb6tovbdotne
t.htm.

19. Boehm, Barry, Software Risk Management, IEEE Computer Society Press, 1989.

20. Microsoft Product Support Services Web Site, Frequently Asked Question - SQL

Server 2000 - Upgrade,
http://support.microsoft.com/support/kb/articles/Q261/3/34.ASP.

21. Microsoft MSDN Online Magazine Web Site, SQL Server and DMO: Distributed

Management Objects Enable Easy Task Automation,
http://msdn.microsoft.com/msdnmag/issues/01/05/sqldmo/sqldmo.asp.

22. Microsoft Product Support Services Web Site, Incompatibility Issues Between

Access 2000 Projects and SQL Server 2000,
http://support.microsoft.com/support/kb/articles/Q269/8/24.ASP.

23. Microsoft Office Web Site, Access 2000 and SQL Server 2000 Readiness Update,

http://office.microsoft.com/downloads/2000/Accsql.aspx.

24. Microsoft MSDN Online Library Web Site, Distributing Custom Icons with Your

Microsoft Office 2000 Applications,
http://msdn.microsoft.com/library/default.asp.

25. Shappell, S. & Wiegmann, D., A Human Factors Analysis of Post-Accident Data:

Applying Theoretical Taxonomies of Human Error and A Human Error Approach
to Accident Investigation: The Taxonomy of Unsafe Operations, The
International Journal of Aviation Psychology, 7, (4), 67-81 & 269-291, 1997.

 407

26. Schmidt, J., Schmorrow, D., & Hardee, M. A., Preliminary Human Factors
Analysis of Naval Aviation Maintenance Related Mishaps (983111), Society of
Automotive Engineers, Inc., 1997.

27. Reason, J., Human Error. Cambridge, UK: Cambridge Press, 1990.

28. Heinrich, H., Industrial Accident Prevention, 4th ed. New York, NY: McGraw-

Hill, 1959.

29. Edwards, E., Introductory Overview from Human Factors in Aviation, (Weiner, E.

L. & Nagel, D.C., Eds.) San Diego, CA: Academic Press. 3-25, 1988.

30. Raghu Ramkrishnan & Johannes Gehrke, Database Management Systems.

McGraw-Hill Companies Inc., Boston, MA., 2000.

31. Replacement For Access Crosstab Website, Steve Dassin,

http://www.angelfire.com/ny4/rac/.

32. Schmidt, J. (1998). Human Factors Accident Classification System Analysis of

Selected National Transportation Safety Board Maintenance Related Mishaps,
Chapter 8. Unpublished Manuscript.

33. Schmorrow D. A Human Error and Analysis Model of Naval Aviation
Maintenance Related Mishaps, Master’s Thesis, Operations Research
Department, Naval Postgraduate School, Monterey, CA (1998).

34. Fry, A.D. Modeling and Analysis of Human Error in Naval Aviation Maintenance
Mishaps, Master’s Thesis, Operations Research Department, Naval Postgraduate
School, Monterey, CA (2000).

 408

THIS PAGE INTENTIONALLY LEFT BLANK

 409

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. CAPT John K. Schmidt (NAVY)
Naval Safety Center
Norfolk, Virginia

 brainsqzer@aol.com

4. CAPT(R) George Zolla
Naval Postgraduate School
Monterey, California

 gazolla@nps.navy.mil

5. Professor Thomas Wu
Naval Postgraduate School
Monterey, California
ctwu@nps.navy.mil

6. LtCDR Chris Eagle (NAVY)
Naval Postgraduae School
Monterey, California
cseagle@cs.nps.navy.mil

7. MAJ Thomas P. Flanders (ARMY)
Naval Postgraduate School
Monterey, California

 tpflande@nps.navy.mil

8. MAJ Scott K. Tufts (ARMY)
Naval Postgraduate School
Monterey, California

 sktufts@nps.navy.mil

 410

9. Chairman, Computer Science Department

Naval Postgraduate School
Monterey, California

 cschair@nps.navy.mil

